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Abstract.
Background: Longitudinal changes in cerebrospinal fluid (CSF) biomarkers are seldom studied. Furthermore, data on
biomarker gradient between lumbar (L-) and ventricular (V-) compartments seems to be discordant.
Objective: To examine alteration of CSF biomarkers reflecting Alzheimer’s disease (AD)-related amyloid-� (A�) aggrega-
tion, tau pathology, neurodegeneration, and early synaptic degeneration by CSF shunt surgery in idiopathic normal pressure
hydrocephalus (iNPH) in relation to AD-related changes in brain biopsy. In addition, biomarker levels in L- and V-CSF were
compared.
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Methods: L-CSF was collected prior to shunt placement and, together with V-CSF, 3–73 months after surgery. Thereafter,
additional CSF sampling took place at 3, 6, and 18 months after the baseline sample from 26 iNPH patients with confirmed
A� plaques in frontal cortical brain biopsy and 13 iNPH patients without A� pathology. CSF Amyloid-�42 (A�42), total tau
(T-tau), phosphorylated tau (P-tau181), neurofilament light (NFL), and neurogranin (NRGN) were analyzed with customized
ELISAs.
Results: All biomarkers but A�42 increased notably by 140–810% in L-CSF after CSF diversion and then stabilized. A�42

instead showed divergent longitudinal decrease between A�-positive and -negative patients in L-CSF, and thereafter increase
in A�-negative iNPH patients in both L- and V-CSF. All five biomarkers correlated highly between V-CSF and L-CSF (A�42

R = 0.87, T-tau R = 0.83, P-tau R = 0.92, NFL R = 0.94, NRGN R = 0.9; all p < 0.0001) but were systematically lower in V-CSF
(A�42 14 %, T-tau 22%, P-tau 20%, NFL 32%, NRGN 19%). With APOE genotype-grouping, only A�42 showed higher
concentration in non-carriers of allele �4.
Conclusion: Longitudinal follow up shows that after an initial post-surgery increase, T-tau, P-tau, and NRGN are stable in
iNPH patients regardless of brain biopsy A� pathology, while NFL normalized toward its pre-shunt levels. A�42 as biomarker
seems to be the least affected by the surgical procedure or shunt and may be the best predictor of AD risk in iNPH patients.
All biomarker concentrations were lower in V- than L-CSF yet showing strong correlations.

Keywords: A�42, biomarkers, idiopathic normal pressure hydrocephalus, neurofilament light, neurogranin, P-tau, T-tau

INTRODUCTION

The biochemical composition of cerebrospinal
fluid (CSF) is commonly used as a surrogate mea-
sure to reflect changes in brain metabolism. CSF is
assumed to undergo alterations by the time it arrives
in the lumbar region (reviewed in [1]). Idiopathic
normal pressure hydrocephalus (iNPH) is a geriatric
disorder characterized by impaired gait and balance,
urinary incontinence, and cognitive decline with evi-
dence of ventriculomegaly [2, 3]. In iNPH patients,
CSF shunting is an effective treatment [4]. Shunt-
valve puncture in iNPH patients, often used to test the
performance of the shunt, allows for the collection of
CSF from the brain ventricles, which is easy, painless,
and considered safe. In addition, a right frontal cor-
tical tissue biopsy, collected during shunt placement,
allows for analysis of brain pathology. Nearly half
of iNPH patients show Alzheimer’s disease (AD)-
related amyloid-� (A�) pathology in biopsies while
10% show concomitant A� and tau pathology [5].
A�42 is an amyloid-derived protein that has proven
its value to detect A� pathology in AD, as well as con-
comitant A� pathology in assisting diagnosis iNPH
[6–11].

Total tau (T-tau) and tau phosphorylated at amino
acid threonine 181 (P-tau) levels in CSF are key diag-
nostic biomarkers for AD, but their interpretation as
markers of neurodegeneration in the brain is less clear
(reviewed in [12]). Secretion of T-tau and P-tau could
be induced by A� pathology [13, 14], and thus the
levels in CSF may at least in part reflect accumu-
lating A� pathology in the AD brain, but CSF T-tau
also increases in disorders without plaques, e.g., with

severe neurodegeneration in Creutzfeldt-Jakob dis-
ease [15] and acute brain injury such as stroke [16].
However, there is also a step-wise increase with more
severe tau pathology, as determined by positron emis-
sion tomography [17].

Neurogranin (NRGN) is a post-synaptic protein
that is upregulated in the CSF of AD patients [12,
18–24]. Higher CSF NRGN levels correlate with the
rate of cognitive decline [25, 26]. Together these
data suggest that NRGN may be a marker of mon-
itor synaptic damage in the brain. High CSF NRGN
levels associate with A� plaques but not with tau,
�-synuclein, or TDP-43 pathology [24], suggesting
that, similar to tau, its upregulation in CSF may at
least in part reflect a response to accumulating A�
pathology in the brain.

Neurofilament light chain (NFL) is a scaffolding
protein of the neuronal cytoskeleton that is highly
expressed in large caliber myelinated axons with a
function in axonal structural support, growth, and
regulation. CSF NFL is increased in several neu-
rodegenerative conditions and is hypothesized to leak
into CSF upon axonal injury and to be a general
biomarker of neurodegeneration [27]. NFL associates
with disease progression in AD independent of A�
pathology [28].

Prospective studies on CSF biomarkers are sparse
and little is known on the changes after CSF shunt. In
this study, we compared A�42, T-tau, P-tau, NRGN,
and NFL, potential biomarkers of neurodegeneration,
in a population of iNPH patients with and without A�
pathology in their brain biopsy. The objectives of this
study were: 1) to determine whether ventricular CSF
(V-CSF) would be superior to lumbar CSF (L-CSF)
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Fig. 1. Selection of shunted iNPH patients presented as a flow-chart. Eligible patients were sorted to groups based on the histopathological
examination of A� in frontal cortical brain biopsy. Based on participating A�-positive patients, controls were requested with the ratio of
2 : 1, leading eventually to the group sizes of 28 A�-positive individuals and 13 A�-negative individuals. iNPH, idiopathic normal pressure
hydrocephalus; A�, amyloid- �; MMSE, Mini-Mental State Examination.

for the analysis of these biomarkers; and 2) to analyze
and compare the longitudinal change in A�42, T-tau,
P-tau, NRGN, and NFL concentrations in L-CSF and
V-CSF samples collected repeatedly over 18 months.

METHODS

Study population and sample collection

Altogether, 201 patients with probable iNPH
according to Relkin criteria [3] were shunted by
right frontal puncture and ventriculoperitoneal CSF
shunt (PS Medical Strata II valve) between January
2009 and December 2015 at the Kuopio University
Hospital following a previously described protocol
[29] (Supplementary Table 1). Brain biopsies of 41
patients were taken during shunt surgery and ana-
lyzed according to the established protocol [30].
The biopsy was taken from the right frontal cortex,
3 cm from the midline and anterior to the coronal
suture, and the size of the cylinder-shaped sample was
2–5 mm in diameter and 3–7 mm in length. Biopsies
were obtained using either biopsy forceps or since
2010 by disposable Temno EvolutionR TT146 biopsy
needle (Merit Medical Systems Inc., South Jordan,
UT, USA). Out of them, 28 patients with confirmed

A� plaques in their frontal cortical brain biopsy
(5 with concomitant tau pathology) and 13 patients
without A� pathology (control group) were included
in the study (Fig. 1). Two A�-positive iNPH patients
withdrew in early stage (Fig. 2). All participants
had Clinical Dementia Rating (CDR)≤1 and Mini-
Mental State Examination (MMSE)≥20. Exclusion
criteria were contraindications for lumbar puncture,
compromised well-being and serology positive hep-
atitis B or C, or human immunodeficiency virus.

Pre-shunt (B1) L-CSF (n = 39) was obtained dur-
ing diagnostic CSF diversion, centrifuged and stored
at a temperature controlled –80◦C freezer. Post-
shunting lumbar (L-) and ventricular (V-) CSF were
simultaneously collected 3 to 73 months after the
shunt placement (median 18 [mean 24] months post-
surgery), to allow for putative normalization of the
biomarker levels after injury caused by the surgery
and thereafter at 3, 6, and 18 months (B0, 3 M,
6 M, and 18 M) sampling points (Fig. 2). All shunt
valve punctures (n = 142) to obtain V-CSF were suc-
cessful without blood contamination, any infections
or other procedure-related harm. Lumbar puncture
after CSF shunt was successful only in 111 out
of 142 attempts (78%) and furthermore 4 sam-
ples (3.6%) had blood contamination. In addition,
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Fig. 2. Sample collection over time with the number of sam-
ples collected for V- and L-CSF in the A�-positive and -negative
groups. Pre-shunt L-CSF was collected prior to the surgery. The
B0 sample collection point was at least 3 but up to 73 months
(mean 24 months; median, 18 months) after the shunt placement,
followed by 3 M, 6 M, and 18 M sample collection points. L-CSF
and V-CSF from the same patient were collected on the same day.
Drop-outs and deaths between the time points presented as num-
bers from study population. Cognition was tested at B0, 6 M, and
18M. #7 revision before B1; ##2 revision before B0; ∗B0 partial
samples: 6 in A�+ and 3 in A�-, 3 M partial samples: 5 in A�+
and 5 in A�-, 6 M partial samples: 4 in A�+ and 4 in A�-, 18 M
partial samples: 3 in A�+ and 5 in A�-; ∗∗B0: bloody CSF in
2 A�+ samples, 3 M: bloody CSF in 1 A�+ and 1 A�- sample;
B1, pre-surgery sample collection time point; B0, baseline visit of
the follow-up; 3 M, three-month study visit; 6 M, six-month study
visit; 18 M, 18-month study visit; L-CSF, cerebrospinal fluid col-
lected with lumbar puncture; V-CSF, cerebrospinal fluid collected
with shunt valve puncture.

one lumbar puncture led to persisting radicular
pain over two months (normal lumbar MRI). Sam-
ples were collected in single 10 mL polypropylene
tubes to avoid adsorption of proteins to tube walls.
CSF samples were mixed to avoid possible gradient

effects, centrifuged, aliquoted, frozen and stored at
a temperature-controlled –80◦C freezer immediately
after collection. All samples analyzed in this study
had at most one freeze-thaw cycle.

Tissue biopsy results on A� and tau pathology
were used to divide patients into a control (no AD-
type pathology; here referred to as biopsy-negative)
group and a group with concomitant AD pathol-
ogy (A� and in five cases also tau; here referred to
as biopsy-positive). Patients were APOE genotyped
by standard PCR method [31]. DNA was extracted
from venous blood using a commercial kit accord-
ing to the manufacturer’s protocol (Illustra Blood
GenomicPrep Mini Spin Kit, GE Healthcare, Little
Chalfont, UK). Figure 2 shows the number of L- and
V-CSF samples collected at the different sampling
points per group indicating dropouts at each time.
This study was approved by the Ethics Committee,
Hospital District of Northern Savo. All participants
gave written, informed consent prior to participation
into the study.

Biomarker analysis

All CSF and plasma samples were analyzed at
the Clinical Neurochemistry Laboratory, Sahlgrenska
University Hospital, Mölndal, Sweden. CSF concen-
trations of A�42, T-tau, and P-tau were measured with
INNOTEST® ELISA kits (Fujirebio, Ghent, Bel-
gium). CSF neurofilament light (NFL) concentration
was measured with the NF-Light kit (UmanDiagnos-
tics, Umeå, Sweden) [32]. CSF neurogranin (NRGN)
concentration was measured using a sandwich ELISA
developed at the Clinical Neurochemistry Laboratory
[24]. In addition, we measured CSF concentrations
of A� isoforms A�38, A�40, and A�42 using a multi-
plexed electrochemiluminescence assay, as described
by the kit manufacturer (Meso Scale Discovery,
Rockville, MD, USA) [33]. All lumbar and ven-
tricular samples of all sampling time points for
each patient were analyzed on the same plate. All
biomarker measurements were performed using one
batch of reagents by board-certified laboratory tech-
nicians blinded to the clinical information.

Statistics

All statistical analysis was performed with IBM
SPSS Statistics version 25.00 for IOS. For numerical
data, group comparisons and changes over time were
analyzed by mixed model multivariate analysis of
variance (ANOVA). Pearson correlation coefficients
were calculated to evaluate the strength of association
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Table 1
Demographic data and biomarker values of the study population with the number of patients

Group A�+, n = 26 A�-, n = 13 Pooled, n = 39

Female (%) 11 (42) 5 (38) 16 (41)
Age; mean (min-max)

B1 76 (63–88) 72 (64–80) 75 (63–88)
B0 78 (64–89) 73 (65–81) 76 (64–89)

MMSE; mean
B1 24 23 24
B0 23 23 23
6M 24 24 24
18M 23 23 23

APOE genotype (%)
34 10 (38) 2 (15) 12 (31)
33 11 (42) 10 (77) 21 (54)
24 1 (4) 0 (0) 1 (3)
23 4 (15) 1 (8) 5 (13)

A�+, Brain biopsy amyloid-A� positive, n = 26

Timescale B1 B0 3 M 6 M 18 M

Biomarkers (Mean) Location
A�42 (ng/l) V-CSF 481 (440) 482 (467) 462 (400) 587 (519)

L-CSF 704 (724) 554 (530) 562 (527) 538 (522) 583 (581)
T-Tau (ng/l) V-CSF 854 (741) 805 (737) 824 (757) 773 (832)

L-CSF 248 (220) 1,057 (923) 1,174 (951) 1,039 (923) 1,110 (1,054)
P-Tau (ng/l) V-CSF 99 (100) 109 (102) 106 (102) 114 (123)

L-CSF 41 (42) 125 (114) 137 (127) 130 (125) 147 (152)
NFL (ng/l) V-CSF 2,398 (1,404) 2,215 (1,832) 1,633 (1,382) 2,629 (1,987)

L-CSF 1,864 (1,179) 2,692 (1,884) 2,669 (2,065) 2,586 (2,077) 3,288 (2,135)
NRGN (ng/l) V-CSF 592 (529) 651 (532) 631 (549) 530 (519)

L-CSF 161(42) 704 (494) 825 (619) 622 (546) 902 (653)

A�-, Brain biopsy amyloid-� negative, n = 13

Biomarkers Location
A�42 (ng/l) V-CSF 664 (721) 705 (711) 721 (729) 1,048 (1,057)

L-CSF 786 (771) 767 (795) 760 (777) 825 (810) 1,052 (1,012)
T-Tau (ng/l) V-CSF 577 (478) 574 (492) 643 (637) 632 (621)

L-CSF 186 (152) 617 (506) 636 (550) 755 (523) 845 (751)
P-Tau (ng/l) V-CSF 74 (69) 79 (77) 86 (85) 110 (115)

L-CSF 34 (27) 78 (70) 86 (86) 98 (85) 146 (145)
NFL (ng/l) V-CSF 2,860 (1,796) 1,629 (1,432) 1533 (1,257) 1,757 (1,046)

L-CSF 1,841 (1,060) 5,136 (4077) 2,974 (2,651) 2,198 (1,647) 3,250 (2,398)
NRGN (ng/l) V-CSF 462 (325) 497 (468) 500 (389) 498 (432)

L-CSF 70 (40) 357 (260) 471 (541) 405 (303) 736 (799)

Patients grouping of A�+ and A�- is based on the brain biopsy A� histopathological examination result. Age of iNPH patients are presented
with mean, minimum and maximum, sex as number and percent, MMSE as a mean and APOE �4 carriers as numbers and percent in the
timescale of B1, B0, 3 M, 6 M, and 18 M. Biomarker concentration values of A�42, T-tau, P-tau, NFL, and NRGN presented as a means and
medians with the timescale and location of sample collection. A�, AD-related amyloid-� MMSE, Mini-Mental State Examination; APOE
�4, apolipoprotein �4 allele; B1, pre-surgery sample collection time point; B0, baseline visit of the follow-up; 3 M, three-month study visit;
6 M, six-month study visit; 18 M, 18-month study visit; A�42, Amyloid-� 42 protein; T-tau, total tau; P-tau, tau phosphorylated at threonine
181; NFL, neurofilament light; NRGN, neurogranin; L-CSF, cerebrospinal fluid collected with lumbar puncture; V-CSF, cerebrospinal fluid
collected with shunt valve puncture.

between biomarkers in lumbar and ventricular CSF.
All significances calculated were two-sided with 5%
significance level used.

Data availability statement

All data related but not published within the arti-
cle is available and will be shared anonymized upon
reasonable request to any qualified investigator.

RESULTS

Table 1 summarizes patient demographics, clini-
cal characteristics, and mean biomarker values. Brain
biopsy A�-positive patients were weighted in 2 : 1
ratio. Brain biopsy A�-positive patients were on the
average 3.5 years older than biopsy A�-negative
patients (p = 0.039). The longitudinal progress of gait
velocity is presented in Supplementary Figure 1F.
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Preoperative lumbar CSF A�42, T-tau, P-tau, NFL,
and NRGN concentrations were similar in brain
biopsy A�-positive and -negative iNPH patients
(Table 1, Fig. 3). After CSF shunt surgery, lumbar
CSF A�42 decreased (p = 0.043, Fig. 3A), especially
in APOE �4 carriers (p = 0.006). Notable increases
were seen in T-tau (p < 0.001), P-tau (p < 0.001), and
NRGN (p = 0.001), which remained elevated during
the later follow-up (Fig. 3C, E, I). The increase was
more prominent in A�-positive patients regarding
P-tau (p = 0.025, Fig. 3E) and tended to be more
obvious also in T-tau (p = 0.054, Fig. 3C), but was
not significant for NRGN (p = 0.287, Fig. 3I). In
NFL based on our modelling, the increase after shunt
(p = 0.004) was only temporary and estimated to nor-
malize in 9 months after the surgery (Supplementary
Figure 1D). The increase was more obvious in A�-
negative patients (p = 0.047, Fig. 3G) but was rather
related with time delay from surgery to the first
follow-up which was significantly shorter in A�-
negative individuals (average 0.7 versus 2.2 years,
p = 0.001). The temporal dynamics of the measured
biomarkers in relation to pre-operative values are pre-
sented in Supplementary Figure 1A-E.

Despite the initial decrease after shunt, A�42
concentration from L- and V-CSF showed increase
during the entire follow-up (p < 0.0001, Fig. 3).
Increase was mostly present in brain biopsy-negative
iNPH patients as the positive group remained rather
stable after post-surgery decrease. The difference of
A�42 was significant between the groups through-
out the follow-up (p = 0.009). In addition, A�42 was
lower in APOE �4 carriers and later increased in
non-carriers (Fig. 4A, B) (p < 0.0001). With NFL,
there was no clear longitudinal change between the
groups after the post-surgery fluctuation. Although
the increase in T-tau, P-tau, NRGN, and NFL after
shunting was somewhat more pronounced in the
biopsy-positive iNPH patients through the follow-up,
it was not significantly different from the biopsy-
negative group (Fig. 3).

To circumvent inter-individual variation in abso-
lute levels of the biomarkers, we normalized the
values of all sampling points as % change towards
pre-shunt L-CSF per patient. Again, we observed a
significant increase in T-tau, P-tau, and NRGN after
shunting in both L- and V-CSF. This increase was
2.5- to 3-fold for T-tau, 2- to 2.5-fold for P-tau, and
6.5- to 8-fold for NRGN and was sustained over time
in both L- and V-CSF. A�42 showed mild increase of
35% in biopsy A�-negative patients both in L- and
V-CSF, as the biopsy A�-positive patients remained

stable. In contrast to A�42, T-tau, P-tau, and NRGN,
there was no clear increase in NFL in the study pop-
ulation as a whole (Fig. 3G, H), besides the transient
increase associated with shunt placement described
earlier.

The absolute levels of A�42 (14%), T-tau (22%),
P-tau (20%), NFL (32%), and NRGN (19%) mea-
sured lower in V-CSF compared to L-CSF (Fig. 5).
The absolute levels of each biomarker in L- and
V-CSF per patient per time point showed a very
strong correlation (A�42: R = 0.87, p < 0.0001; T-
tau: R = 0.83, p < 0.0001; P-tau: R = 0.92, p < 0.0001;
NFL: R = 0.94, p < 0.0001; NRGN: R = 0.90, p <
0.0001) (Table 2). No effect of APOE �4 genotype on
T-tau, P-tau, NFL, and NRGN levels was observed.
The 18M correlation of L- with V-CSF A�42/40 ratio
was very strong (R = 0.97, p < 0.0001; Fig. 5F).

As expected, T-tau showed a very strong correla-
tion with P-tau both in L- and V-CSF (Table 2, Fig. 6).
T-tau and P-tau correlated more weakly with NRGN,
a correlation of which was somewhat higher in L-
versus V-CSF (Table 2, Fig. 6). A�42 and NFL, on
the other hand, did not correlate well or at all with
each other or with T-tau, P-tau, and NRGN (Table 2).
Because of a transient increase in NFL in a sub-
set of patients having the B0 sampling point up to
9 months post-surgery, we correlated the NFL val-
ues of the pre-shunt, B0 and 3 M sampling points of
this group with their corresponding T-tau, P-tau, and
NRGN values (data not shown). We found a medium
to strong correlation between NFL and T-tau (L-CSF
R = 0.76, p < 0.0001; V-CSF R = 0.63, p = 0.009), as
well as NFL and P-tau (L-CSF R = 0.64, p < 0.0001;
V-CSF R = 0.30, p = 0.263) in both V- and L-CSF.
NRGN showed only medium strength correlation in
L-CSF (R = 0.56, p = 0.001). These correlations were
completely lost in the 6 M and 18 M sampling point
values. They were also absent in those iNPH patients
that had their 0M sampling point collected over 9
months post-surgery.

DISCUSSION

In this study, we analyzed longitudinal changes
in the concentrations of five potential biomarkers
of neurodegeneration (A�42, T-tau, P-tau, NRGN,
and NFL) in V- and L-CSF of iNPH patients. This
study provides the first longitudinal analysis of these
biomarkers in simultaneously collected L- and V-
CSF. It provides also the first longitudinal comparison
of these biomarkers towards pre-operatively obtained
L-CSF in iNPH patients who had recovered from
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Fig. 3. Longitudinal analysis of biomarkers of neurodegeneration in lumbar (A, C, E, G, and I) and ventricular (B, D, F, H, and J) CSF for
amyloid-�42 (A�42; A, B), total tau (T-tau; C, D), tau phosphorylated at threonine 181 (P-tau; E, F), neurofilament light (NFL; G, H), and
neurogranin (NRGN; I, J). iNPH patients were grouped into to biopsy positive (dark gray) and biopsy negative (light gray) patients based
on the presence or absence of A� pathology in their corresponding frontal biopsy. Values expressed as means ± standard error. ∗p < 0.05;
∗∗p < 0.01 between biopsy-positive and -negative patients in specific time point. B1, pre-surgery sample collection time point; B0, baseline
visit of the follow-up; 3 M, three-month study visit; 6 M, six-month study visit; 18 M, 18-month study visit; L-CSF, cerebrospinal fluid
collected with lumbar puncture; V-CSF, cerebrospinal fluid collected with shunt valve puncture.
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Fig. 4. Longitudinal analysis of A�42 in lumbar (A) and ventricular (B) CSF in iNPH patients grouped according to APOE �4 genotype
carriers (dark gray) and non-carriers (light gray). Values expressed as means ± standard error. ∗p < 0.05∗; ∗∗p < 0.01 iNPH, idiopathic normal
pressure hydrocephalus; APOE �4, apolipoprotein E �4 allele; B1, pre-surgery sample collection timepoint; B0, baseline visit of the follow-
up; 3M, three-month study visit; 6 M, six-month study visit; 18 M, 18-month study visit; L-CSF, cerebrospinal fluid collected with lumbar
puncture; V-CSF, cerebrospinal fluid collected with shunt valve puncture.

the shunt surgery for a minimum of 3 months, after
which biomarker levels were assumed to have nor-
malized from acute upregulation resulting from the
surgery. In lumbar A�42, we found an interesting
decrease after shunt surgery, which was most pro-
nounced in brain biopsy-positive patients. However,
during the follow-up, the concentrations stabilized
in both groups and eventually increased in the brain
biopsy-negative group. To our surprise, we observed
a sustained longitudinal increase in T-tau, P-tau, and
NRGN levels after surgery. Based on our modelling,
NFL showed only a transient increase with levels
returning to the pre-shunt levels 6 to 9 months post-
surgery (Fig. 7). There was also a trend towards
somewhat higher biomarker levels in brain biopsy
A�-positive iNPH patients, apart from A�42, and it
would be interesting to investigate whether these dif-
ferences would become significant in larger groups.

The reason for the sustained increase in T-tau, P-
tau, and NRGN after surgery and the NFL decrease
toward baseline levels over time remains unclear but
may represent the disease process of iNPH or change
in CSF flow due to shunt. For AD patients, T-tau and
P-tau has been shown to increase over time for 2% per
year [34], which may indicate the disease process. In
traumatic brain injury (TBI), T-tau levels were shown
to already decrease toward baseline levels 20–43 days
after the injury [35, 36], while a study in amateur
boxers showed that both T-tau and P-tau levels nor-
malized 3 months after brain injury [37]. With NFL,
the study from amateur boxers showed that after acute
upregulation during the first days after TBI, NFL lev-
els had normalized towards baseline levels in 80% of
boxers after 2 weeks [36]. In 20% of boxers, how-
ever, NFL levels remained significantly upregulated
or were even increased after two weeks compared to

the control group and this was postulated to reflect
continued sports-related mild TBI [36]. When tak-
ing into account the correlation with time delay from
surgery to the follow-up CSF sampling, the increase
in NFL was probably rather related to timing than
brain biopsy A� profile. If splitting up the group
depending on the time delay prior to the first follow-
up sample (early: from 3 to 9 M and late: over 9 M),
NFL seems to reflect effects of the shunt surgery,
i.e., that the temporary increase after CSF shunt, last-
ing up to 9 months, may at least partly represent the
minor injury related with penetration of the brain in
CSF shunt surgery.

The interesting correlation of the early NFL
concentrations to T-tau, P-tau, and NRGN evokes
question whether the T-tau, P-tau, and NRGN upreg-
ulation imply the longer lasting neuronal damage due
to or despite of shunt surgery. We found no correlation
between MMSE and the measured biomarkers, thus,
the informative value of biomarkers about the state
of cognitive functions with iNPH patients remains
unclear. Whether this is explained by a sustained
injury or a change of CSF clearance or flow dynamics
because of the shunting, remains to be shown. Since
iNPH seems to be somewhat progressive despite
shunt treatment in a number of patients [2], biomark-
ers predicting long-term outcome would be valuable.

CSF T-tau is suggested by the NIA-AA research
framework to be a biomarker of neurodegeneration
or neuronal injury [38]. We show here that this may
need to be combined with NFL or other biomarkers
of neurodegeneration to assess treatment effects of
disease-modifying therapy as levels of T-tau, P-tau,
and NRGN may not decrease over time.

The traditional hypothesis of CSF flow has been
challenged [39] and there are evidence that CSF
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Fig. 5. Ratios of A�42 (A), T-tau (B), P-tau (C), NFL (D), NRGN (E), and A�42/40 ratio (F) in V- and L-CSF. Ratios are presented as box and
whiskers plot that portrays the median (center line), mean (cross), Q1 (lower edge of box), Q3 (upper edge of box), minimum and maximum
(lines) values. Each boxplot presents all results of one sample collection point of the CSF and single dots demonstrate results of a single
iNPH patient. The A�42/40 result is from 18M time point and presented as correlation matrix. The A�42/40 ratios presented showed strong
correlation between lumbar and ventricular CSF, expressed as Pearson R2. Linear trend-line adjusted for values to enhance the visibility
of correlation. A�, amyloid- �; B1, pre-surgery sample collection timepoint; B0, baseline visit of the follow-up; 3M, three-month study
visit; 6M, six-month study visit; 18M, 18-month study visit; A�42, Amyloid-� 42 protein; T-tau, total tau; P-tau, tau phosphorylated at
threonine 181; NFL, neurofilament light; NRGN, neurogranin; L-CSF, cerebrospinal fluid collected with lumbar puncture; V-CSF, cere-
brospinal fluid collected with shunt valve puncture; Q1, quartile 1 holding values up to 25 percentile; Q3, quartile 3 holding values up to
75 percentile.

movement is a local mixing and diffusion rather
than unidirectional flow of production and absorp-
tion. Shunt treatment and the iNPH disease itself can
change the CSF flow [40–43] and the composition of
the CSF collected in this study.

Simultaneously collected repeated L- and V-CSF
samples indicated that in all 5 biomarkers tested, the
levels were around 14–32% lower in V- compared
with L-CSF. The reason for this remains specula-
tive but the result is in line with a previous report
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[6] showing lower levels of T-tau, A�40 and A�42 in
V-CSF of iNPH patients. All samples from one indi-
vidual were run on the same plate, and the absolute
values of one individual patient for each particular

Table 2
Correlations of A�42, T-tau, P-tau, NFL, and NRGN in lumbar-

and intraventricular-CSF

A�42 T-tau P-tau NFL NRGN

Lumbar CSF
A�42 1 ∗–0.23 –0.10 ∗–0.21 ∗–0.19
T-tau ∗–0.23 1 ∗∗∗0.88 ∗∗0.31 ∗∗∗0.60
P-tau –0.10 ∗∗∗0.88 1 ∗0.25 ∗∗∗0.55
NFL ∗–0.21 ∗∗0.31 ∗0.25 1 ∗0.17
NRGN ∗–0.19 ∗∗∗0.60 ∗∗∗0.55 ∗0.17 1

Intraventricular
A�42 1 0.01 ∗0.19 –0.05 0.07
T-tau 0.01 1 ∗∗∗0.78 ∗0.24 ∗∗∗0.43
P-tau ∗0.19 ∗∗∗0.78 1 0.16 ∗∗∗0.44
NFL –0.05 ∗0.24 0.16 1 0.06
NRGN 0.07 ∗∗∗0.43 ∗∗∗0.44 0.06 1

L-CSF & V-CSF ∗∗∗0.87 ∗∗∗0.83 ∗∗∗0.92 ∗∗∗0.94 ∗∗∗0.90

Significances of Pearson-r values presented as ∗p < 0.05,
∗∗p < 0.001, ∗∗∗p < 0.0001. A�42, Amyloid-� 42 protein; T-tau,
total tau; P-tau, tau phosphorylated at threonine 181; NFL, neu-
rofilament light; NRGN, neurogranin; L-CSF, cerebrospinal fluid
collected with lumbar puncture; V-CSF, cerebrospinal fluid col-
lected with shunt valve puncture.

time point correlated very highly. Thus, we think
this cannot be attributed to a technical error in the
measurement. A potential reason for the higher con-
centrations in L-CSF is the dominant diffusion to

Fig. 7. The schematic presentation of the temporal dynamics in
biomarkers of neurodegeneration plotted with the time in years (y)
from shunt surgery and percentual change from the pre-surgery val-
ues (100%). The plots are formed with local polynomial regression
and based on the data shown in Supplementary Figure 1A-E. Mul-
tipliers added to figure, are highlighting the longitudinal elevation
found for biomarkers. A�42, Amyloid-� 42; T-tau, total tau; P-tau,
tau phosphorylated at threonine 181; NFL, neurofilament light;
NRGN, neurogranin.

Fig. 6. Correlation analysis of T-tau levels versus levels of P-tau (A), T-tau versus NRGN (B), P-tau versus NRGN (C) in lumbar (L-CSF,
black triangle) and ventricular (V-CSF, light gray circle) samples. Pearson R2 values and significance level were calculated, and linear graphs
adjusted according to the values. All time points of B1, B0, 3 M, 6 M, and 18 M are included in correlation analysis. T-tau, total tau; P-tau, tau
phosphorylated at threonine 181; NRGN, neurogranin; B1, pre-surgery sample collection timepoint; B0, baseline visit of the follow-up; 3 M,
three-month study visit; 6 M, six-month study visit; 18 M, 18-month study visit; L-CSF, cerebrospinal fluid collected with lumbar puncture;
V-CSF, cerebrospinal fluid collected with shunt valve puncture.
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lumbar CSF due to the gravitation and this gradient
effect might be amplified by high molecular weight.

In previous studies [44–46], V-CSF was shown to
contain higher levels of T-tau or P-tau compared with
L-CSF in iNPH patients, supporting the postulated
theory of a concentration gradient of brain-derived
proteins with higher levels in V-CSF. However, in
these studies the levels were biased by the surgi-
cal procedure in V-CSF sampling that seems to have
rather long-lasting effect on CSF biomarkers of brain
injury [47]. In other studies presenting T-tau or P-tau
levels higher in rostral compared with lumbar CSF
[46, 48], a rostro-caudal gradient has been suggested.
Consequently, the validity of tap test-collected large
volume lumbar CSF that may be “contaminated” by
V-CSF remains unclear. In addition, a study [49] pre-
senting higher T-tau levels in cisternal CSF compared
with L-CSF, had a patient population with trigemi-
nal neuralgia or tension-type headache. In this study,
with samples collected up to 3 months post-surgery
using the shunt valve puncture, we provide a dis-
tinct approach for the gradient comparison but cannot
determine the effect of CSF shunt on the gradient.

Current study confirm that shunt valve puncture is
considered to be a safe and feasible option to obtain
CSF samples from shunted iNPH patients. How-
ever, V-CSF requires specific reference limits for
diagnostic purpose since the biomarker values are
systematically 14–32% lower than in L-CSF. The
lumbar puncture success rate (78%) was notably
low, which possibly could be explained by potential
shrinkage of spinal dura sac [50] due to contin-
uous CSF diversion [51]. The high correlation of
biomarker concentrations in V- and L-CSF can be
utilized to produce correction factors for specific
biomarkers from intraventricular samples. Since the
success rate of shunt valve puncture is good and the
sampling procedure is easier to repeat, V-CSF analy-
sis of shunted iNPH is a promising tool for biomarker
diagnostics in the future.

We are aware that the total number of brain biopsy
A�-negative iNPH patients is half of the biopsy-
positive patients, which may have influence on our
results. The other issue to consider is the finite num-
ber of iNPH patients in addition to the alternating
participation to study visits and the limited success
rate of lumbar sample collection. Furthermore, A�40
was analyzed only in the first and last time point. We
also came by the challenge of variable delay from
shunt surgery to the first follow-up sample collection.
Especially with the biomarkers related to TBI, e.g.,
T-tau, P-tau, and NFL, we had to consider all possible

explanations for the fluctuation. In addition, the tis-
sue biopsy is rather small, only few cubic mm, and
taken from the frontal cortex, thus AD-type pathology
present in other areas of the brain could be missed.
However, biopsy A� correlates well with autopsy
[52] and amyloid PET [53].

The examined biomarkers correlated mostly as
expected, both between the V-CSF and L-CSF and
between other biomarkers. The understanding of the
longitudinal behavior of biomarkers of neurodegen-
eration, including their diffusion between different
compartments is important for the correct assessment
of advantages and limitations of these biomarkers as
biomarkers of disease progression.

In APOE �4 carriers, lumbar A�42 was lower
and showed a steep decrease after shunt insertion
and thereafter a minor tendency to decrease while
non–carriers showed milder decrease after shunt and
thereafter a significant increase. This result is sim-
ilar to longitudinal changes previously reported in
AD patients [34] and may indicate activation of
APOE-related clearance of A� by CSF shunt in iNPH
patients. Surprisingly, no such APOE-related effect
was seen in the increase of CSF P-tau. These intrigu-
ing preliminary findings motivate further study.

CONCLUSIONS

Longitudinal follow up shows that after initial
upregulation post-surgery, T-tau, P-tau, and NRGN
are stable in iNPH patients with or without A�
pathology in brain biopsy, while NFL normalized
towards its pre-shunt levels. A�42 instead showed
divergent longitudinal decrease between brain biopsy
A�-positive and -negative patients in L-CSF, and
thereafter increase in biopsy-negative iNPH patients
in L- and V-CSF. Thus, A�42 seems to be the
biomarker that is the least affected by the surgical pro-
cedure or the presence of shunt and may be the best
predictor of AD risk in iNPH patients. The concentra-
tion of all biomarkers measured 14–32% lower in V-
than L-CSF yet showing strong correlations between
the two sample types.
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[14] Schelle J, Häsler LM, Göpfert JC, Joos TO, Vanderstichele
H, Stoops E, Mandelkow EM, Neumann U, Shimshek DR,
Staufenbiel M, Jucker M, Kaeser SA (2017) Prevention
of tau increase in cerebrospinal fluid of APP transgenic
mice suggests downstream effect of BACE1 inhibition.
Alzheimers Dement 13, 701-709.
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A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L,
Hansson O, Andreasson U, Teunissen CE, Scheltens P,
Van Der Flier WM, Zetterberg H, Portelius E, Blennow
K (2015) Cerebrospinal fluid levels of the synaptic protein
neurogranin correlates with cognitive decline in prodromal
Alzheimer’s disease. Alzheimers Dement 11, 1180-1190.

[20] Kvartsberg H, Portelius E, Andreasson U, Brinkmalm
G, Hellwig K, Lelental N, Kornhuber J, Hansson O,
Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow
K, Lewczuk P (2015) Characterization of the postsynaptic

https://www.j-alz.com/manuscript-disclosures/20-1361r2
https://dx.doi.org/10.3233/JAD-201361


H. Lukkarinen et al. / Longitudinal CSF BioM in iNPH 1641

protein neurogranin in paired cerebrospinal fluid and plasma
samples from Alzheimer’s disease patients and healthy con-
trols. Alzheimers Res Ther 7,40.

[21] Kester MI, Teunissen CE, Crimmins DL, Herries EM,
Ladenson JKH, Scheltens P, Van Der Flier WM, Morris JC,
Holtzman DM, Fagan AM (2015) Neurogranin as a cere-
brospinal fluid biomarker for synaptic loss in symptomatic
Alzheimer disease. JAMA Neurol 72, 1275-1280.

[22] Wellington H, Paterson RW, Suárez-González A, Poole T,
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[24] Portelius E, Olsson B, Höglund K, Cullen NC, Kvartsberg
H, Andreasson U, Zetterberg H, Sandelius Å, Shaw LM, Lee
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son M, Bäckström DC, Bartos A, Bjerke M, Blennow K,
Boxer A, Brundin L, Burman J, Christensen T, Fialová L,
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