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SUMMARY

Elucidation of molecular mechanisms that regulate
synapse formation is required for the understanding
of neural wiring, higher brain functions, and mental
disorders. Despite the wealth of in vitro information,
fundamental questions about how glutamatergic
synapses are formed in the mammalian brain remain
unanswered. Glutamate receptor (GluR) d2 is essen-
tial for cerebellar synapse formation in vivo. Here, we
show that the N-terminal domain (NTD) of GluRd2
interacts with presynaptic neurexins (NRXNs)
through cerebellin 1 precursor protein (Cbln1). The
synaptogenic activity of GluRd2 is abolished in cere-
bellar primary cultures from Cbln1 knockout mice
and is restored by recombinant Cbln1. Knockdown
of NRXNs in cerebellar granule cells also hinders
the synaptogenic activity of GluRd2. Both the NTD
of GluRd2 and the extracellular domain of NRXN1b

suppressed the synaptogenic activity of Cbln1 in
cerebellar primary cultures and in vivo. These results
suggest that GluRd2 mediates cerebellar synapse
formation by interacting with presynaptic NRXNs
through Cbln1.

INTRODUCTION

Synapse formation is the key step in the development of

neuronal networks. Precise synaptic connections between nerve

cells in the brain provide the basis of perception, learning,

memory, and cognition. Thus, elucidation of molecular mecha-

nisms that regulate the formation and modulation of central

synapses is essential for the understanding of neural wiring,

brain functions, and mental disorders such as schizophrenia,

autism, and mental retardation. Excitatory synapse formation

in the brain requires the coordinate assembly of large numbers
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of protein complexes and specialized membrane domains

required for synaptic transmission (Scheiffele, 2003; Kim and

Sheng, 2004; Waites et al., 2005; Dalva et al., 2007; McAllister,

2007). Over the past few decades, a number of factors have

been identified that play roles in synapse morphogenesis and

synaptic plasticity. Trans-synaptic cell adhesion molecules

represented by neurexins (NRXNs) and neuroligins (NLGNs) are

thought to mediate target recognition and induction of pre-

and postsynaptic specializations (Scheiffele, 2003; Dalva et al.,

2007; Südhof, 2008). Cell culture studies indicate that NRXNs

and NLGNs could act bidirectionally to induce pre- and postsyn-

aptic assembly, thus controlling synapse formation (Scheiffele

et al., 2000; Graf et al., 2004; Dean et al., 2003; Chih et al.,

2005). However, phenotypic analyses of NLGN1, NLGN2, and

NLGN3 triple-knockout mice and NRXN1a, NRXN2a, and

NRXN3a triple-knockout mice suggest that these molecules

are dispensable for synapse formation in vivo (Missler et al.,

2003; Varoqueaux et al., 2006). Thus, despite the wealth of

information, fundamental questions about how glutamatergic

synapses are formed in the mammalian brain remain unan-

swered (Waites et al., 2005; McAllister, 2007).

On the other hand, there is clear in vivo evidence that

GluRd2, a member of the d-type glutamate receptor (GluR),

plays an essential role in cerebellar Purkinje cell (PC) synapse

formation (Kashiwabuchi et al., 1995; Kurihara et al., 1997;

Takeuchi et al., 2005). The cerebellum receives two excitatory

afferents, the climbing fiber (CF) and the mossy fiber-parallel

fiber (PF) pathway, both converging onto PCs that are the

sole neurons sending outputs from the cerebellar cortex.

GluRd2 is selectively expressed in cerebellar PCs (Araki

et al., 1993; Lomeli et al., 1993) and is exclusively localized

at PF-PC synapses (Takayama et al., 1996; Landsend et al.,

1997). We found that a significant number of PC spines lack

synaptic contacts with PF terminals and that some of residual

PF-PC synapses show mismatching between pre- and post-

synaptic specializations in conventional and conditional

GluRd2 knockout mice (Kashiwabuchi et al., 1995; Kurihara

et al., 1997; Takeuchi et al., 2005). These studies indicate
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Figure 1. Identification of Presynaptic

Proteins Interacting with the NTD of GluRd2

(A) Schema for screening presynaptic proteins

interacting with the NTD of GluRd2.

(B) Induction of presynaptic differentiation of

cerebellar GCs by GluRd2-NTD-Fc-coated

magnetic beads. After induction of presynaptic

differentiation, the culture was treated with cross-

linker DTSSP. Beads were visualized by differen-

tial interference contrast (DIC).

(C) SDS-PAGE analysis of crosslinked proteins by

silver staining.

(D) Binding of GluRd2-NTD-Fc to HEK293T cells

transfected with NRXN1b-V5 or NRXN2b-V5

together with EGFP in the presence of HA-Cbln1.

Scale bars represent 5 mm in (B) and 10 mm in (D).

See also Figure S1 and Table S1.
that the formation and maintenance of PF-PC synapses are

critically dependent on GluRd2 in vivo. Thus, elucidation of

the mechanism how GluRd2 regulates PF-PC synaptic

connection should provide a clue to understand synapse

formation in the brain. Based on the direct relationship

between the density of postsynaptic GluRd2 and the size of

presynaptic active zones in GluRd2 mutant mice generated

by inducible Cre-mediated ablation, we have proposed that

GluRd2 makes a physical linkage between the active zone

and postsynaptic density (PSD) by direct or indirect interaction

with an active zone component (Takeuchi et al., 2005). Indirect

interaction through PSD proteins appears to be less likely

since the C-terminal truncation of GluRd2 has little effect on

PF-PC synapse formation, while the mutation impairs cere-

bellar LTD and motor learning (Uemura et al., 2007), in agree-

ment with the critical role of Delphilin interacting with the C-

terminal of GluRd2 in LTD and motor learning (Takeuchi

et al., 2008). On the other hand, the synaptogenic activity of

GluRd2 is reproduced in vitro using primary cultures of cere-

bellar granule cells (GCs), and the extracellular N-terminal

domain (NTD) of GluRd2 is essential and sufficient to induce

presynaptic differentiation in vitro (Uemura and Mishina, 2008).

Thus, it is likely that GluRd2 regulates synapse formation by

direct interaction between its NTD and presynaptic protein(s).

Here, we isolate GluRd2-interacting molecules by crosslinking

the NTD of GluRd2 with cell surface proteins of cerebellar GCs

after induction of presynaptic differentiation. Binding studies

show that postsynaptic GluRd2 interacts with presynaptic

NRXNs through cerebellin 1 precursor protein (Cbln1). Induc-

ible ablation of Cbln1 in the adult brain impairs PF-PC

synaptic connections as found for GluRd2 (Takeuchi et al.,

2005). The synaptogenic activity of GluRd2 is hindered by

knockout of Cbln1 and by small interfering RNA (siRNA)-medi-

ated knockdown of NRXNs. Furthermore, the synaptogenic
Cell 141, 1068–107
activity of Cbln1 in cerebellar primary

cultures and in vivo was abolished by

the NTD of GluRd2 and the extracellular

domain (ECD) of NRXN1b. These results

suggest that the trans-synaptic interac-

tion of postsynaptic GluRd2 and pre-
synaptic NRXNs through Cbln1 mediates PF-PC synapse

formation in the cerebellum.

RESULTS

Isolation of Presynaptic Proteins Interacting
with the NTD of GluRd2
To look for GluRd2-interacting proteins, we employed primary

cultures of cerebellar GCs with which the synaptogenic activity

of GluRd2 can be reproduced in vitro (Uemura and Mishina,

2008). The presynaptic differentiation of cerebellar GCs was

induced by treatment with magnetic beads coated with the

NTD of GluRd2 (GluRd2-NTD) fused to the Fc-domain of human

immunoglobulin G (GluRd2-NTD-Fc), and then surface proteins

of cerebellar GC axons were crosslinked to GluRd2-NTD

using nonpermeable 3,30-dithiobis(sulfosuccinimidylpropionate)

(DTSSP) for identification by mass spectrometric analysis

(Figure 1A). After incubation for 2 days, cultured cerebellar

GCs extended their axons, and numerous punctate staining

signals for active zone protein Bassoon accumulated on the

surface of magnetic beads coated with GluRd2-NTD-Fc, but

not on the surface of control beads coated with Fc alone

(Figure 1B). Surface proteins of cerebellar GCs crosslinked to

GluRd2-NTD were isolated from detergent-treated cultures

through magnetic beads and were subjected to SDS-PAGE.

Silver staining showed stronger signals including several promi-

nent bands in the preparation from GluRd2-NTD-Fc-coated

beads compared with those from control Fc-coated beads

(Figure 1C). Comparative analysis of the isolated proteins by

liquid chromatography-tandem mass spectrometry (LC-MS/

MS) identified NRXN1, NRXN2, FAT2, protein tyrosine phos-

phatase s (PTPs), and Cbln1 as possible GluRd2-interacting

proteins (Table S1 available online). Most of these proteins are

known to accumulate at the presynaptic terminals and some of
9, June 11, 2010 ª2010 Elsevier Inc. 1069



Figure 2. Selective Interaction of GluRd2

with NRXN Variants Containing S4 in the

Presence of Cbln1

(A) Binding of GluRd2-NTD-Fc to HEK293T

cells transfected with NRXN1b-V5, NRXN2b-V5

or NRXN3b-V5 together with EGFP in the pres-

ence of HA-Cbln1 but not to those transfected

with NRXN1b(–S4)-V5, NRXN2b(–S4)-V5 or

NRXN3b(–S4)-V5.

(B) Binding of NRXN1b-ECD-Fc to HEK293T cells

transfected with GluRd2 in the presence of HA-

Cbln1.

(C) Cell aggregation assay of HEK293T cells trans-

fected with GluRd2 and EGFP and those with

NRXN1b and RFP in the presence of HA-Cbln1.

Scale bars represent 10 mm in (A) and (B) and

100 mm in (C). See also Figure S2.
them are implicated in synaptogenesis. Thus, the crosslinking

procedures appear to be effective to isolate presynaptic proteins

interacting with or being close to the NTD of GluRd2.

GluRd2 Interacts with b-NRXN in the Presence of Cbln1
We expressed each of the isolated presynaptic membrane

proteins in HEK293T cells by transfection of expression vectors

for NRXN1b tagged with V5 epitope at the C terminus (NRXN1b-

V5), NRXN2b-V5, FAT2 tagged with Myc at the C terminus

(FAT2-Myc), and PTPs. The transfected cells were incubated

with soluble GluRd2-NTD-Fc to test their ability to interact with

GluRd2. No significant signals for GluRd2-NTD-Fc were detect-

able on the surface of any of the transfected HEK293T cells by

immunocytochemistry with anti-Fc antibody (Figure S1A).

HEK293T cells transfected with a mixture of all the expression

vectors also showed no significant signals for GluRd2-NTD-Fc.

Among the isolated proteins, Cbln1 remained untested. Cbln1,

originally identified as a precursor of cerebellin by Morgan and

colleagues (Slemmon et al., 1984), is a glycoprotein secreted

from cerebellar GCs (Bao et al., 2005). Interestingly, Cbln1

knockout mice phenotypically mimic GluRd2 knockout mice

(Kashiwabuchi et al., 1995; Kishimoto et al., 2001; Mishina,

2003), showing impairments of PF-PC synapse formation, LTD,

and motor learning (Hirai et al., 2005). When recombinant

Cbln1 tagged with hemagglutinin (HA) at the N terminus (HA-

Cbln1) was added to the culture, we detected significant immu-

nofluorescent signals for GluRd2-NTD-Fc on the surface of

HEK293T cells transfected with expression vectors for the

presynaptic membrane proteins. After a series of selections,

we found robust immunofluorescent signals for GluRd2-NTD-

Fc on the surface of HEK293T cells transfected with NRXN1b-

V5 or NRXN2b-V5 in the presence of HA-Cbln1 (Figure 1D).

Neither FAT2-Myc nor PTPs showed any significant binding

signals even in the presence of HA-Cbln1 (Figure S1B).
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Splice Variant-Selective
Interaction of GluRd2 and NRXN
It is known that presynaptic NRXNs

bind to postsynaptic NLGNs, forming

trans-synaptic cell adhesion complexes

(Ichtchenko et al., 1995; Scheiffele
et al., 2000; Graf et al., 2004), and NLGNs preferentially bind to

NRXNs lacking splice segment 4 (S4) (Boucard et al., 2005;

Chih et al., 2006; Comoletti et al., 2006). We thus examined

whether the splice segment of NRXNs affects the interaction

with GluRd2. HEK293T cells transfected with NRXN1b-V5

showed robust signals for GluRd2-NTD-Fc in the presence of

HA-Cbln1; however, signals for GluRd2-NTD-Fc were hardly

detectable on the surface of HEK293T cells transfected with

a splice variant lacking S4 [NRXN1b(–S4)-V5] (Figure 2A). The

NTD of GluRd2 also bound to HEK293T cells expressing

NRXN2b-V5 or NRXN3b-V5 in the presence of HA-Cbln1 but

not to those expressing NRXN2b(–S4)-V5 or NRXN3b(–S4)-V5.

Consistently, robust signals for the ECD of NRXN1b tagged

with Fc (NRXN1b-ECD-Fc) but not for NRXN1b(–S4)-ECD-Fc

were found on the surface of HEK293T cells transfected with

GluRd2 in the presence of HA-Cbln1 (Figure 2B). Thus, GluRd2

selectively interacts with NRXN variants containing S4, in

contrast to NLGNs showing higher affinity for NRXNs lacking

S4. Interestingly, RT-PCR analysis showed that NRXN variants

containing S4 were expressed in the cerebellum but those lack-

ing S4 were hardly detectable, while both variants were found in

the cerebral cortex and hippocampus (Figure S2).

To determine whether heterophilic binding between the NTD

of GluRd2 and the ECD of NRXN1b mediates cell adhesion,

we incubated HEK293T cells transfected with GluRd2 and

EGFP and those transfected with HA-NRXN1b and RFP in

the presence of HA-Cbln1 (Figure 2C). The transfected cells

aggregated into large clumps, which suggests that GluRd2

and NRXN1b function as heterophilic cell adhesion molecules.

Aggregation between GluRd2- and NRXN1b-transfected cells

was not observed in the absence of HA-Cbln1. Neither

HEK293T cells expressing GluRd2 nor those expressing HA-

NRXN1b showed homophilic aggregation in the presence of

HA-Cbln1.



Figure 3. Direct Interaction between

GluRd2 and Cbln1

(A) Pulldown assay of the interaction of GluRd2-

NTD-Fc and NRXN1b-ECD-AMH in the presence

of HA-Cbln1.

(B) Binding of soluble HA-Cbln1 to HEK293T cells

transfected with GluRd2 but not to those trans-

fected with AMPA-type GluRs. The scale bar

represents 10 mm.

(C) Pulldown assay of the interaction between

GluRd2-NTD-Fc and HA-Cbln1.

(D) SPR analysis. Interaction kinetics was

measured by passing various concentrations

(0.625, 1.25, 2.5, 5, and 10 mg/ml) of purified HA-

Cbln1-His over GluRd2-NTD-Fc captured on the

surface of a sensor chip. Responses were fitted

globally to a two-state reaction model with BIAe-

valuation 4.1 software. Thin black lines represent

best-fit theoretical curves.

See also Figure S3.
GluRd2 Is a Receptor for Cbln1
We then tested for biochemical association between GluRd2 and

NRXN in the presence of Cbln1. GluRd2-NTD-Fc and NRXN1b-

ECD tagged with alkaline phosphatase, Myc, and histidine

epitopes at the C terminus (NRXN1b-ECD-AMH) were incubated

together with HA-Cbln1. Protein A coprecipitated NRXN1b-

ECD-AMH and HA-Cbln1 together with GluRd2-NTD-Fc

(Figure 3A). However, NRXN1b(–S4)-ECD-AMH was not copreci-

pitated by Protein A with GluRd2-NTD-Fc and HA-Cbln1

(Figure S3A). These observations suggest that the NTD of post-

synaptic GluRd2 can interact with the ECD of presynaptic

b-NRXNs in the presence of Cbln1.

Since GluRd2 can interact with NRXNs only when Cbln1 is

present, it appears that Cbln1 could bind to GluRd2, NRXN, or

both to stimulate their interaction. To clarify the issue, we

expressed GluRd2 in HEK293T cells and incubated the trans-

fected cells with HA-Cbln1. Robust signals for HA-Cbln1 were

found on the surface of the transfected HEK293T cells (Fig-

ure 3B). There were no detectable signals on the surface of

HEK293T cells transfected with AMPA-type GluRa1 (GluR1) or

GluRa2 (GluR2). Replacement of the NTD of GluRd2 by that of

GluRa1 abolished the binding signals. These results suggest

that Cbln1 interacts selectively with the NTD of GluRd2. To

examine whether GluRd2 binds directly to Cbln1, we incubated

GluRd2-NTD-Fc with HA-Cbln1. Protein A coprecipitated

HA-Cbln1 together with GluRd2-NTD-Fc (Figure 3C). Thus, we
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conclude that Cbln1 can bind directly to

the NTD of GluRd2. HA-Cbln1 hardly

bound to GluRa1-NTD-Fc or GluRa2-

NTD-Fc (Figure S3B).

To quantify the interaction between

GluRd2 and Cbln1, we employed sur-

face plasmon resonance (SPR) binding

assays. Decreasing concentrations of

Cbln1 tagged with HA and His epitopes

at the N and C termini, respectively

(HA-Cbln1-His), were injected over
GluRd2-NTD-Fc-tethered chip surface (Figure 3D). Analysis of

the association and dissociation phases of the sensorgrams by

a two-state reaction model showed a dissociation constant

(KD) of 16.5 nM, indicating a high-affinity interaction between

the NTD of GluRd2 and Cbln1.

Thus, it is possible that Cbln1 may allosterically alter GluRd2 to

acquire NRXN binding ability. Alternatively, Cbln1 may also bind

to NRXNs as a linker of GluRd2 and NRXNs.

NRXN Is Another Receptor for Cbln1
To examine the issue, we expressed NRXN1b-V5 in HEK293T

cells and incubated the transfected cells with HA-Cbln1. Robust

signals for HA-Cbln1 were found on the surface of the trans-

fected HEK293T cells (Figure 4A). There were no detectable

signals on the surface of HEK293T cells transfected with

NRXN1b(–S4)-V5. We also detected robust signals for HA-

Cbln1 on the surface of HEK293T cells transfected with

NRXN2b-V5 and NRXN3b-V5 but not of those transfected with

their variants lacking S4 (Figure S4). These results suggest that

Cbln1 interacts with NRXNs containing S4. To examine whether

Cbln1 binds directly to NRXN1b, we incubated NRXN1b-ECD-

AMH with HA-Cbln1. Anti-Myc antibody coimmunoprecipitated

HA-Cbln1 together with NRXN1b-ECD-AMH (Figure 4B). Thus,

Cbln1 can directly bind to the ECD of NRXN1b.

The interaction between NRXN1b and Cbln1 was examined

by SPR analysis. Decreasing concentrations of HA-Cbln1-His
9, June 11, 2010 ª2010 Elsevier Inc. 1071



Figure 4. Direct Interaction between Cbln1

and NRXN1b

(A) Binding of HA-Cbln1 to HEK293T cells

transfected with NRXN1b-V5 but not to those

transfected with NRXN1b(–S4)-V5. The scale bar

represents 10 mm.

(B) Pulldown assay of the interaction between

NRXN1b-ECD-AMH and HA-Cbln1.

(C) SPR analysis. Interaction kinetics was

measured by passing various concentrations

(0.625, 1.25, 2.5, 5, and 10 mg/ml) of purified HA-

Cbln1-His over NRXN1b-ECD-Fc captured on

the surface of a sensor chip. Responses were

fitted globally to a two-state reaction model with

BIAevaluation 4.1 software. Thin black lines repre-

sent best-fit theoretical curves.

(D) A proposed model for trans-synaptic interac-

tion between postsynaptic GluRd2 and presyn-

aptic NRXN through Cbln1.

See also Figure S4.
were injected over NRXN1b-ECD-Fc-tethered chip surface

(Figure 4C). Sensorgrams showed specific binding of HA-

Cbln1-His to NRXN1b-ECD-Fc. Analysis of the association and

dissociation phases of the sensorgrams by a two-state reaction

model showed a KD of 0.17 nM, indicating a high affinity interac-

tion between NRXN1b and Cbln1.

Based on these results, we propose a model for the trans-

synaptic interaction of postsynaptic GluRd2 with presynaptic

NRXN through Cbln1 (Figure 4D).

Cbln1 Is Essential for PF-PC Synapse Formation
The synaptic connection between PF and PC is critically depen-

dent on GluRd2 not only during development but also in the adult

stage (Kashiwabuchi et al., 1995; Takeuchi et al., 2005). Given

that the interaction of GluRd2 and Cbln1 is essential for PF-PC

synapses, the ablation of Cbln1 in the adult cerebellum should

also affect the synaptic connection. To test this hypothesis, we

generated Cbln1flox/flox mice carrying loxP sites in the 50 flanking

region and intron 2 of the Cbln1 gene using C57BL/6 embryonic

stem cells (ESCs) (Mishina and Sakimura, 2007) and crossed

with inducible and cerebellar GC-specific Cre mice (Tsujita

et al., 1999) (Figure 5A and Figures S5A and S5B). Activation of

Cre recombinase fused with progesterone receptor (CrePR) by

intraperitoneal injection of RU-486 gradually abolished the

expression of Cbln1 (28 kDa) in the adult cerebellum

(Figure 5B). Inspection of PF-PC synapses by electron micros-

copy revealed the appearance of naked PC spines lacking

presynaptic contacts and mismatched synapses with expanded
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PSD over active zone (Figure 5C and

Figure S5C), suggesting the impairment

of PF-PC synaptic connections. The

numbers of free spines and aberrant

synapses were increased as Cbln1 was

decreased (Figure 5D). Thus, Cbln1 is

required not only for synapse formation

during development but also for its main-

tenance in the adult cerebellum. The simi-
larity in the effect on PF-PC synaptic connections between

GluRd2 and Cbln1 conditional ablations supports the notion

that their interaction is essential for PF-PC synapse formation

in the cerebellum.

GluRd2 Requires Cbln1 for Induction of Presynaptic
Differentiation
To examine directly the role of GluRd2-Cbln1 interaction in PF-

PC synapse formation, we seeded HEK293T cells transfected

with GluRd2 and EGFP on the top of cultured cerebellar GCs

prepared from wild-type and Cbln1 knockout mice. After

2 days of coculture, cells were immunostained with antibodies

against GluRd2, Bassoon, and vesicular glutamate transporter

1 (VGluT1). We detected numerous punctate staining signals

for Bassoon and VGluT1 on the surface of HEK293T cells ex-

pressing GluRd2 when cocultured with cerebellar GCs from

wild-type mice (Figure 5E and Figure S5D). However, these

punctate signals were hardly detectable for cerebellar GCs

prepared from Cbln1 knockout mice. There were significant

differences in the staining signals for Bassoon and VGluT1

between wild-type and knockout cultures (Tukey’s test,

p < 0.01) (Figure 5G and Figure S5E). Addition of HA-Cbln1 to

primary cultures of cerebellar GCs from Cbln1 knockout mice

restored the presynaptic differentiation induced by GluRd2

expressed in HEK293T cells. It is suggested that Cbln1 forms

a trimer through the C-terminal globular C1q domain and subse-

quently a hexamer through the cysteine residues 34 and 38 at the

N terminus (Bao et al., 2005). HA-Cbln1 mutants in which serine



Figure 5. GluRd2 Requires Cbln1 for Induc-

tion of Presynaptic Differentiation

(A) Schema for induction of cerebellar GC-specific

Cbln1 ablation.

(B) Decrease of Cbln1 after CrePR induction. Top:

western blot analysis of Cbln1 and NSE in the

cerebella before and after drug administration.

Bottom: relative amounts of Cbln1 in drug- and

mock-treated mice (two to three mice each).

(C) Electron micrographs of cerebella 4 weeks

after RU-486 treatment. Drug-treated Cbln1flox/

flox mice served as controls. n, normal synapses;

m, mismatched synapses; f, free spines. Bottom

left: a normal synapse in a control mouse. Bottom

right: matched and mismatched synapses and

a free spine in a GC-specific Cbln1 knockout

mouse. Open and filled arrowheads indicate the

edges of active zone and PSD, respectively.

(D) Emergence of mismatched synapses (triangles)

and free spines (circles) in GC-specific Cbln1

knockout (filled symbols) and control (open

symbols) mice by drug treatment (two mice each).

(E and F) Induction of presynaptic differentiation

of cultured cerebellar GCs prepared from

Cbln1+/+ or Cbln1�/� mice by GluRd2 expressed

on HEK293T cells (E) and by GluRd2-NTD-Fc-

coated on beads (F).

(G and H) Intensity of staining signals for Bassoon

of cultured cerebellar GCs prepared from Cbln1+/+

or Cbln1�/�mice on the surface of HEK293T cells

transfected with GluRd2 and EGFP (n = 10 each)

(G) and on the surface of GluRd2-NTD-Fc-coated

beads (n = 20 each) (H).

All values represent mean ± SEM. **, p < 0.01; Tu-

key’s test. Scale bars represent 1 mm in the top of

(C), 0.5 mm in the bottom of (C), 10 mm in (E), and

5 mm in (F). See also Figure S5.
residues were substituted for these cysteine residues (HA-

Cbln1-CS) failed to rescue the GluRd2-induced presynaptic

differentiation of cerebellar GCs from Cbln1 knockout mice.

Similar results were obtained when the presynaptic

differentiation of cerebellar GCs was induced by GluRd2-NTD-

Fc-coated beads (Figures 5F and 5H and Figures S5F and

S5G). Consistently, HA-Cbln1-CS failed to interact with

GluRd2-NTD-Fc and NRXN1b-ECD-AMH (Figures 3C and 4B).

These results suggest that GluRd2 requires Cbln1 for its synap-

togenic activity.

GluRd2 Requires NRXN for Induction of Presynaptic
Differentiation
We examined whether NRXNs are essential components

of GluRd2 and Cbln1-dependent presynaptic differentiation of

cerebellar GCs by using soluble NRXN1b-ECD and siRNAs.

Given that the synaptogenic activity of GluRd2 requires NRXNs,
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recombinant NRXN1b-ECD may com-

pete with endogenous NRXNs of GCs

for interaction with GluRd2 through

Cbln1. Addition of NRXN1b-ECD-Fc

to a coculture of GluRd2-expressing

HEK293T cells and cerebellar GCs signif-
icantly reduced the intensity of Bassoon signals (p < 0.01)

(Figures 6A and 6B). This suggests that the interaction with

NRXNs is indispensable for the synaptogenic activity of GluRd2.

We next generated siRNAs directed against the mouse Nrxn1,

Nrxn2, and Nrxn3, and tested their efficacy by cotransfection

with NRXN expression vectors into HEK293T cells (Figures

S6A and S6B). Introduction of a mixture of all the siRNAs into

cerebellar GCs in culture suppressed the expression of endoge-

nous Nrxn1, Nrxn2, and Nrxn3 messenger RNAs (mRNAs)

(Figures S6C and S6D). When the mixture of siRNAs against

Nrxn1, Nrxn2, and Nrxn3 was transfected into cerebellar GCs,

we observed strong reduction of punctate staining signals for

Bassoon on the surface of HEK293T cells expressing GluRd2

(Figure 6C). Simultaneous knockdown of all three Nrxns resulted

in 72% reduction in the punctate staining signals for Bassoon on

the surface of HEK293T cells expressing GluRd2 (p < 0.01)

(Figure 6D and Figure S6E). Transfection of an expression vector
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Figure 6. GluRd2 Requires NRXN for Induc-

tion of Presynaptic Differentiation

(A) Inhibition of GluRd2-induced presynaptic differ-

entiation of cultured cerebellar GCs by NRXN1b-

ECD-Fc.

(B) Intensity of staining signals for Bassoon of

cultured cerebellar GCs on the surface of

HEK293T cells transfected with GluRd2 and

EGFP in the presence or absence of NRXN1b-

ECD-Fc (n = 5 each).

(C) Suppression of GluRd2-induced presynaptic

differentiation of cultured cerebellar GCs by

a mixture of siRNAs against Nrxn1, Nrxn2, and

Nrxn3 and rescue by siRNA-resistant HA-NRXN1b

(res-HA-NRXN1b).

(D) Effects of siRNA treatments on the intensity of

staining signals for Bassoon of cultured cerebellar

GCs on the surface of HEK293T cells transfected

with GluRd2 and EGFP (n = 20 each).

(E) Suppression of GluRd2-induced EGFP-VAMP2

accumulation in cultured cerebellar GCs by

a mixture of siRNAs against Nrxn1, Nrxn2, and

Nrxn3 and rescue by res-HA-NRXN1b.

(F) Effects of siRNA treatments on the intensity of

staining signals for EGFP-VAMP2 in cultured cere-

bellar GCs (n = 20 each).

All values represent mean ± SEM. * and **, p < 0.05

and p < 0.01, respectively; Tukey’s test. Scale bars

represent 10 mm in (A), (C), and (E). See also

Figure S6.
for an siRNA-resistant form of mouse HA-NRXN1b (res-HA-

NRXN1b) together with the mixture of siRNAs partially restored

the GluRd2-induced presynaptic differentiation of cerebellar

GCs as estimated by the accumulation of punctate staining

signals for Bassoon (p < 0.01) (Figures 6C and 6D). On the other

hand, cotransfection of res-HA-NRXN1b(–S4) failed to rescue

the GluRd2-induced presynaptic differentiation of cerebellar

GCs from the suppression by the siRNAs against Nrxns.

When an expression vector for vesicle-associated membrane

protein-2 (VAMP-2) fused with EGFP at its N terminus (EGFP-

VAMP2) as a synaptic vesicle marker was cotransfected into

cerebellar GCs with the mixture of siRNAs against Nrxn1,

Nrxn2, and Nrxn3, we observed strong reduction in the accumu-

lation of EGFP-VAMP2 signals on the surface of HEK293T cells

expressing GluRd2 (Figure 6E). Simultaneous knockdown of all

three Nrxns resulted in 79% reduction in EGFP-VAMP2 signals

on the surface of HEK293T cells expressing GluRd2 (p < 0.01)

(Figure 6F and Figure S6F). Transfection of res-HA-NRXN1b
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together with the mixture of siRNAs

partially restored the GluRd2-induced

presynaptic differentiation of cerebellar

GCs as estimated by the accumulation

of EGFP-VAMP2 signals (p < 0.01)

(Figures 6E and 6F). On the other hand,

cotransfection of res-HA-NRXN1b(–S4)

failed to rescue the GluRd2-induced

presynaptic differentiation of cerebellar

GCs from the suppression by the siRNAs

against Nrxns. These results suggest that
GluRd2 requires NRXNs in addition to Cbln1 for the induction of

presynaptic differentiation of cerebellar GCs.

Interaction of GluRd2, Cbln1, and NRXN Is Essential
for PF-PC Synapse Formation
Finally, we tested the effects of NRXN1b-ECD and GluRd2-NTD

on the synaptogenic activity of Cbln1 in cerebellar primary

cultures and in vivo to examine the importance of the interaction

between GluRd2 and neurexin through Cbln1 in PF-PC synapse

formation. In primary cultures of cerebellar neurons, numerous

punctate staining signals for VGluT1 were found on the dendrites

of PCs from wild-type mice, but VGluT1 signals on PC dendrites

in cultures prepared from Cbln1 knockout mice were signifi-

cantly reduced (p < 0.01) (Figures 7A and 7B). Addition of HA-

Cbln1 significantly restored the intensity of VGluT1 signals on

PC dendrites in cultures from Cbln1 knockout mice as described

previously (Ito-Ishida et al., 2008). However, the synaptogenic

activity of Cbln1 in primary cultures was significantly suppressed



Figure 7. Suppression of Cbln1 Synapto-

genic Activity by GluRd2-NTD and

NRXN1b-ECD

(A) Suppression of HA-Cbln1-induced accumula-

tion of VGluT1 immunostaining signals on

Cbln1�/� PC dendrites by NRXN1b-ECD-Fc.

Top: Cbln1+/+ cultures. Bottom: Cbln1�/� cultures

incubated with HA-Cbln1 in the presence or

absence of NRXN1b-ECD-Fc.

(B) Effect of NRXN1b-ECD-Fc on HA-Cbln1-

induced VGluT1 staining signals on Cbln1�/� PC

dendrites (n = 15 each).

(C) Suppression of HA-Cbln1-induced accumula-

tion of VGluT1 immunostaining signals on

Cbln1�/� PC dendrites by GluRd2-NTD-Fc.

(D) Effect of GluRd2-NTD-Fc on HA-Cbln1-

induced VGluT1 staining signals on Cbln1�/� PC

dendrites (n = 15 each).

(E) Electron micrographs of Cbln1+/+ and Cbln1�/�

cerebella (top) and Cbln1�/� cerebella 24 hr after

injection of HA-Cbln1 with or without NRXN1b-

ECD-Fc (bottom).

(F) Effect of NRXN1b-ECD-Fc on HA-Cbln1-

induced restoration of PF-PC synaptic structures

in Cbln1�/� cerebella (three or four mice each).

(G) Electron micrographs of Cbln1�/� cerebella

48 hr after injection of HA-Cbln1 with or without

GluRd2-NTD-Fc.

(H) Effect of GluRd2-NTD-Fc on HA-Cbln1-

induced restoration of PF-PC synaptic structures

in Cbln1�/� cerebella (six mice each).

All values represent mean ± SEM. * and **, p < 0.05

and p < 0.01, respectively; Tukey’s test or

Student’s t test. Scale bars represent 50 mm in

the top of (A), 10 mm in the bottom of (A) and in

(C), and 1 mm in (E) and (G).
by NRXN1b-ECD-Fc (p < 0.01) and GluRd2-NTD-Fc (p < 0.01)

(Figures 7A–7D). Injection of HA-Cbln1 in the cerebellum of

Cbln1 knockout mice significantly restored PF-PC connections

as shown by the increase of matched PF-PC synapses and

concomitant decrease of free spines (Figures 7E and 7F). The

in vivo synatogenic activity of HA-Cbln1 was suppressed by

NRXN1b-ECD-Fc (p < 0.01) and GluRd2-NTD-Fc (p < 0.05)

(Figures 7E–7H). These results suggest that the ternary interac-

tion of postsynaptic GluRd2, Cbln1, and presynaptic NRXN plays

an essential role in PF-PC synapse formation in vivo.

DISCUSSION

Elucidation of molecular mechanisms that regulate the excitatory

synapse formation in the brain is prerequisite for the under-

standing of neural wiring, higher brain functions, and mental

disorders. GluRd2 should be a clue to solve the issue because

the analysis of conventional and conditional knockout mice

provides evidence that GluRd2 plays an essential role in vivo in
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the formation and maintenance of excit-

atory PF-PC synapses in the cerebellum

(Kashiwabuchi et al., 1995; Kurihara

et al., 1997; Takeuchi et al., 2005).
Furthermore, the synaptogenic activity of GluRd2 can be repro-

duced in vitro (Uemura and Mishina, 2008). Here, we show that

GluRd2 mediates PF-PC synapse formation by interacting with

presynaptic NRXNs through Cbln1.

Trans-Synaptic Triad of GluRd2, Cbln1, and NRXN Is
Essential for Excitatory Synapse Formation
Our results suggest that GluRd2 requires both Cbln1 and NRXN

for its synaptogenic activity. Consistently, both conventional and

conditional Cbln1 knockout mice show impaired PF-PC synapse

formation in the cerebellum as GluRd2 knockout mice do

(Figure 5) (Kashiwabuchi et al., 1995; Takeuchi et al., 2005; Hirai

et al., 2005). Suppression of the synaptogenic activity of Cbln1

by GluRd2-NTD and NRXN1b-ECD suggests that the ternary

interaction of GluRd2, Cbln1, and NRXN is essential for PF-PC

synapse formation in vivo (Figure 7). Direct binding experiments

show that GluRd2 is a receptor for Cbln1 and NRXN is another

receptor for Cbln1. The KD value of Cbln1 for the NTD of GluRd2

estimated by SPR binding assays is 16.5 nM and that for the ECD
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of NRXN1b is 0.17 nM. These values suggest high-affinity inter-

actions of GluRd2, Cbln1, and NRXN as compared with KD

values (�200 to �600 nM) reported for the interactions between

NLGNs and NRXNs (Comoletti et al., 2003; Koehnke et al., 2008).

Since Cbln1 is a ligand for both GluRd2 and NRXN, we propose

a model in which postsynaptic GluRd2 interacts with presynaptic

NRXN through Cbln1 and this ternary interaction provides

a physical linkage between PSD and active zone (see Figure 4D).

This model well explains our previous observations that the size

of the presynaptic active zone shrank progressively concomitant

with the decrease of postsynaptic GluRd2 proteins upon induc-

ible Cre-mediated GluRd2 ablation (Takeuchi et al., 2005).

Furthermore, it is reasonable that Cbln1 knockout mice pheno-

typically mimic GluRd2 knockout mice.

On the other hand, it appears hard to reconcile our results with

the observations that a-NRXN triple-knockout mice show no

defects in the formation of the vast majority of synapses in vivo

(Missler et al., 2003; Dudanova et al., 2007). However, b-NRXNs

are intact in the a-NRXN knockout mice (Missler et al., 2003) and

thus could support the synaptogenesis. Consistent with this

possibility is our observation that impairment of the synapto-

genic activity of GluRd2 by knockdown of all three NRXNs can

be rescued at least partially by NRXN1b, one of b-NRXNs.

Furthermore, Li et al. (2007) showed that Drosophila neurexin

plays a crucial role in the cytoarchitecture of synapses and adhe-

sive interactions between pre- and postsynaptic compartments.

In Drosophila neurexin mutants, presynaptic densities are not

properly apposed to PSDs, reminiscent of mismatched

synapses in GluRd2 knockout mice (Figure 5) (Takeuchi et al.,

2005). It is worthwhile to note that the density of inhibitory

synapses was reduced in the brainstem of a-NRXN triple-

knockout mice (Missler et al., 2003). Both a-NRXNs and b-

NRXNs may have a general function of synapse formation and

their roles may be differentially redundant.

Many trans-synaptic cell adhesion molecules interact in

a homo- or heterophilic fashion across the synaptic cleft

(Dalva et al., 2007). Thus, the triad of postsynaptic GluRd2,

Cbln1, and presynaptic NRXN essential for PF-PC synapse

formation represents a new form of trans-synaptic adhesion

interactions. Cbln1 secreted from presynaptic cerebellar GCs

acts as a divalent ligand for both pre- and postsynaptic trans-

membrane receptors. Involvement of a soluble factor is also

reported for trans-homophilic interaction of glial derived neuro-

trophic factor (GDNF) receptor molecules, which is triggered

by GDNF probably through an allosteric mechanism (Ledda

et al., 2007).

Synapse Formation in the Brain
GluRd2 interacts selectively with NRXN variants containing S4

through Cbln1, whereas NLGNs bind preferentially to those

without S4 (Boucard et al., 2005; Chih et al., 2006; Comoletti

et al., 2006). Interestingly, NRXN variants containing S4 are pref-

erentially expressed in the cerebellum (Figure S2). Enormous

diversity of NRXNs produced by splicing may enable them to

selectively interact not only with NLGN variants but also with

multiple different molecules to ensure the specificity of large

numbers of distinct synapses in the brain. Because GluRd2 is

selectively expressed in cerebellar PCs (Araki et al., 1993; Lomeli
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et al., 1993) and Cbln1 is predominantly expressed in GCs (Hirai

et al., 2005; Miura et al., 2006), the ternary interaction of GluRd2,

Cbln1 and NRXN should be specific for cerebellar PF-PC

synapses. Thus, the GluRd2-Cbln1-NRXN triad may represent

a combinatory ‘‘protein code’’ for synapse specificity determina-

tion in the brain.

Ablation of GluRd2 causes the appearance of free spines as

hallmarks of impaired synapse formation in cerebellar PCs

(Kashiwabuchi et al., 1995). Despite the strong effect on synapse

formation in vivo, approximately half of PF-PC synapses appear

to remain preserved in GluRd2 null mutant mice. There should be

parallel mechanism(s) of cerebellar PF-PC synapse formation in

addition to the GluRd2-Cbln1-NRXN triad system. GluRd1 may

partly replace GluRd2 since GluRd1 has the activity to induce

presynaptic differentiation of cerebellar GCs (Uemura and

Mishina, 2008). Alternatively, NLGNs may act as postsynaptic

partners of NRXNs to mediate cerebellar PF-PC synapse forma-

tion in place of GluRd2 and Cbln1. However, genetic ablation of

NLGN1, NLGN2, and NLGN3 does not result in a substantial loss

of either excitatory or inhibitory synaptic contacts (Varoqueaux

et al., 2006).

Our results suggest that Cbln1 selectively binds to the d-type

GluR among GluR subfamilies. The selectivity of Cbln1-GluR

interaction is consistent with our previous observations that

GluRd1 and GluRd2 but not AMPA-type GluRs induce presyn-

aptic differentiation of cerebellar GCs (Uemura and Mishina,

2008). In contrast to highly selective expression of GluRd2 in

cerebellar PCs, GluRd1 is widely expressed in the brain

(Yamazaki et al., 1992; Lomeli et al., 1993). In addition,

members of Cbln and NRXN families are widely distributed

in the brain (Ullrich et al., 1995; Miura et al., 2006). It is possible

that NRXNs may interact with GluRd1 through Cblns and that

this triad might be involved in synapse formation in the fore-

brain. Interestingly, both GluRd1 and NRXN are implied in the

pathogenesis of schizophrenia (Fallin et al., 2005; Rujescu

et al., 2009).

Despite the wealth of information on the molecular mecha-

nisms of glutamatergic synaptogenesis proposed by studies

using cortical and hippocampal cell culture models, evidence

for their relevance to synaptogenesis in vivo is lacking (Waites

et al., 2005; McAllister, 2007). For example, numbers of studies

have demonstrated a role for NRXNs and NLGNs in both excit-

atory and inhibitory synapse formation in vitro (Scheiffele et al.,

2000; Graf et al., 2004; Prange et al., 2004; Chih et al., 2005).

However, these in vitro results are in contrast to in vivo loss-

of-function studies, which show dramatic functional impair-

ments at both types of synapses in triple NLGN and a-NRXN

null mutant mice but no significant defects in synaptogenesis

(Missler et al., 2003; Varoqueaux et al., 2006; Dudanova

et al., 2007). The discrepancy between in vitro and in vivo

studies might reflect compensation by other synaptogenic

factors or redundancy in the systems that control synapse

formation (Dalva et al., 2007). Our finding that GluRd2 mediates

cerebellar PF-PC synapse formation by interacting with NRXN

variants containing S4 through Cbln1 raises an intriguing possi-

bility that presynaptic NRXNs in the forebrain may regulate

synapse formation by interacting with postsynaptic molecules

other than NLGNs.



EXPERIMENTAL PROCEDURES

Screening of Proteins Interacting with the NTD of GluRd2

GluRd2-NTD-Fc- and Fc-coated magnetic beads were added to cultured

cerebellar GCs prepared from neonatal ICR mice at postnatal day 7 (P7)

(Uemura and Mishina, 2008). After 2 days, cultures were crosslinked with

1 mM DTSSP (Pierce). After lysis of crosslinked neurons, bound proteins

were purified by magnetic separator. Proteins separated by SDS-PAGE

were stained with silver staining or negative gel stain MS kit (Wako) for in gel

digestion. Gel lanes were excised into 12 individual fractions, and proteins in

each fraction were reduced, alkylated, and digested with trypsin as described

(Katayama et al., 2004). The resulting peptides were analyzed by LC-MS/MS

with an ESI ion trap mass spectrometer (LTQ, Thermo Electron Corporation).

Details are described in the Extended Experimental Procedures.

Construction of Expression Vectors and Preparation of Soluble

Recombinant Proteins

Soluble recombinant proteins were prepared by transfection of respective

expression vectors into the Freestyle 293 cells (Invitrogen). Details are

described in the Extended Experimental Procedures.

Cell Cultures

Primary cerebellar cultures were prepared from neonatal mice at P0 and P7 as

described (Uemura et al., 2004; Uemura and Mishina, 2008). Details of cell

cultures, coculture assay, cell surface binding assay, and cell aggregation

assay are described in the Extended Experimental Procedures.

Pulldown Assay

Soluble recombinant proteins were mixed and incubated with Protein A-Se-

pharose Fast Flow (GE Healthcare) or anti-Myc antibody-conjugated agarose

(MBL). Bound proteins were analyzed by western blotting. Details are

described in the Extended Experimental Procedures.

SPR Binding Analysis

SPR binding assays were conducted on a Biacore 3000 biosensor equipped

with a sensor chip CM5 (GE Healthcare). Data analysis was performed with

BIAevaluation software Ver. 4.1. The responses were fit to a two-state reaction

model to calculate the KD. Details are described in the Extended Experimental

Procedures.

Generation of Floxed Cbln1 Mice and Induction of GC-Specific

Ablation of Cbln1

Floxed Cbln1 mice were generated with C57BL/6 ESCs, and induction of

CrePR-mediated gene ablation by RU-486 was carried out according to the

procedures described previously (Takeuchi et al., 2005; Mishina and

Sakimura, 2007). Details are described in the Extended Experimental

Procedures.

Electron Microscopy

Cerebellar parasagittal sections were postfixed with 1% osmium tetroxide in

0.1 M cacodylate buffer, dehydrated in graded alcohols, and embedded in

Epon 812. Electron micrographs were taken at a magnification of 40003

with an H-7100 electron microscope (Hitachi High-Technologies). Details are

described in the Extended Experimental Procedures.

RNA Interference Experiment

We transfected a mixture of siRNAs (150 pmol each) with or without pCAG-

EGFP-VAMP2 to cerebellar GCs by electroporation using Neucleofector and

mouse Nucleofector kit (Amaxa Biosystems) with program G-013. For rescue

experiments, an expression vector for siRNA-resistant HA-NRXN1b was

cotransfetced with the mixture of siRNAs. The transfected GCs (DIV4) were

cocultured with HEK293T cells transfected with pcGRD2 (Uemura and Mishina,

2008) and pEGFP-C1 (Clontech) or with pcGRD2 and pTagRFP (Evrogen) for

5 hr. Details are described in the Extended Experimental Procedures.
Assay of Synaptogenic Activity of Cbln1

The in vitro synaptogenic activity of HA-Cbln1 was examined in cultured cere-

bellar neurons prepared from Cbln1�/�mice (DIV20). The in vivo synaptogenic

activity was examined by injection of HA-Cbln1 into the subarachnoid space

above the rostrodorsal part of the cerebellum of Cbln1�/� mice (4–6 weeks

of age). We examined the effects of NRXN1b-ECD-Fc and GluRd2-NTD-Fc

on the synaptogenic activity of HA-Cbln1 in vitro and in vivo. Details are

described in the Extended Experimental Procedures.

Image Acquisition and Quantification

Image acquisition and quantification were performed as described previously

(Uemura and Mishina, 2008). The outlines of distal dendrites of PCs were

traced and the intensities of the VGluT1 signals within the traced regions

were measured on the computer screen using ImageJ software. Statistical

significance was evaluated by one-way ANOVA. When the interaction was

significant, Tukey’s post hoc test or Student’s t test was used. Statistical

significance was assumed when p < 0.05.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six
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Südhof, T.C. (1995). Neuroligin 1: a splice site-specific ligand for b-neurexins.

Cell 81, 435–443.

Ito-Ishida, A., Miura, E., Emi, K., Matsuda, K., Iijima, T., Kondo, T., Kohda, K.,

Watanabe, M., and Yuzaki, M. (2008). Cbln1 regulates rapid formation and

maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro

and in vivo. J. Neurosci. 28, 5920–5930.

Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C.,

Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., et al. (1995). Impairment of motor

coordination, Purkinje cell synapse formation, and cerebellar long-term

depression in GluR d 2 mutant mice. Cell 81, 245–252.

Katayama, H., Tabata, T., Ishihama, Y., Sato, T., Oda, Y., and Nagasu, T.

(2004). Efficient in-gel digestion procedure using 5-cyclohexyl-1-pentyl-b-D-

maltoside as an additive for gel-based membrane proteomics. Rapid Com-

mun. Mass Spectrom. 18, 2388–2394.

Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat. Rev.

Neurosci. 5, 771–781.

Kishimoto, Y., Kawahara, S., Suzuki, M., Mori, H., Mishina, M., and Kirino, Y.

(2001). Classical eyeblink conditioning in glutamate receptor subunit d 2

mutant mice is impaired in the delay paradigm but not in the trace paradigm.

Eur. J. Neurosci. 13, 1249–1253.

Koehnke, J., Jin, X., Trbovic, N., Katsamba, P.S., Brasch, J., Ahlsen, G.,

Scheiffele, P., Honig, B., Palmer, A.G., 3rd, and Shapiro, L. (2008). Crystal

structures of b-neurexin 1 and b-neurexin 2 ectodomains and dynamics of

splice insertion sequence 4. Structure 16, 410–421.

Kurihara, H., Hashimoto, K., Kano, M., Takayama, C., Sakimura, K.,

Mishina, M., Inoue, Y., and Watanabe, M. (1997). Impaired parallel

fiber—>Purkinje cell synapse stabilization during cerebellar development

of mutant mice lacking the glutamate receptor d2 subunit. J. Neurosci.

17, 9613–9623.

Landsend, A.S., Amiry-Moghaddam, M., Matsubara, A., Bergersen, L., Usami,

S., Wenthold, R.J., and Ottersen, O.P. (1997). Differential localization of d gluta-

mate receptors in the rat cerebellum: coexpression with AMPA receptors in

parallel fiber-spine synapses and absence from climbing fiber-spine

synapses. J. Neurosci. 17, 834–842.

Ledda, F., Paratcha, G., Sandoval-Guzmán, T., and Ibáñez, C.F. (2007). GDNF
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