63 research outputs found

    The effects of the initial mass function on Galactic chemical enrichment

    Get PDF
    Context. We have been seeing mounting evidence that the stellar initial mass function (IMF) might extend far beyond the canonical Mi ∌ 100 M⊙ limit, but the impact of such a hypothesis on the chemical enrichment of galaxies is yet to be clarified. Aims. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair instability supernovae. Methods. We built new sets of chemical yields from massive and very massive stars up to Mi ∌ 350 M⊙ by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code, we analysed the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. Results. After several tests, we set our focus on the [O/Fe] ratio that best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ∌ 100 M⊙, we can reproduce various observational constraints for thin-disc stars; however, the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 M⊙, while including the chemical ejecta of very massive stars in the form of winds and pair instability supernova (PISN) explosions. Conclusions. Our study indicates that PISN may have played a significant role in shaping the chemical evolution of the thick disc of the Milky Way. Including their chemical yields makes it easier to reproduce not only the level of the α-enhancement, but also the observed slope of thick-disc stars in the [O/Fe] vs. [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in models of chemical evolution

    22Ne and 23Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22Ne(p,gamma)23Na

    Get PDF
    We investigate the impact of the new LUNA rate for the nuclear reaction 22^{22}Ne(p,γ)23(p,\gamma)^{23}Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0 M⊙−6.0 M⊙3.0\,M_{\odot} - 6.0\,M_{\odot}, and metallicities Zi=0.0005Z_{\rm i}=0.0005, Zi=0.006Z_{\rm i}=0.006, and Zi=0.014Z_{\rm i} = 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22^{22}Ne and 23^{23}Na AGB ejecta, which drop from factors of ≃10\simeq 10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23^{23}Na, the uncertainties that still affect the 22^{22}Ne and 23^{23}Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available

    The optical head of the EnVisS camera for the Comet Interceptor ESA mission: Phase 0 study

    Get PDF
    EnVisS (Entire Visible Sky) is an all-sky camera specifically designed to fly on the space mission Comet Interceptor. This mission has been selected in June 2019 as the first European Space Agency (ESA) Fast mission, a modest size mission with fast implementation. Comet Interceptor aims to study a dynamically new comet, or interstellar object, and its launch is scheduled in 2029 as a companion to the ARIEL mission. The mission study phase, called Phase 0, has been completed in December 2019, and then the Phase A study had started. Phase A will last for about two years until mission adoption expected in June 2022. The Comet Interceptor mission is conceived to be composed of three spacecraft: spacecraft A devoted to remote sensing science, and the other two, spacecraft B1 and B2, dedicated to a fly-by with the comet. EnVisS will be mounted on spacecraft B2, which is foreseen to be spin-stabilized. The camera is developed with the scientific task to image, in push-frame mode, the full comet coma in different colors. A set of ad-hoc selected broadband filters and polarizers in the visible range will be used to study the full scale distribution of the coma gas and dust species. The camera configuration is a fish-eye lens system with a FoV of about 180°x45°. This paper will describe the preliminary EnVisS optical head design and analysis carried out during the Phase 0 study of the mission

    A Mercury surface radiometric model for SIMBIO-SYS instrument suite on board of BepiColombo mission

    Get PDF
    The BepiColombo mission represents the cornerstone n.5 of the European Space Agency (ESA) and it is composed of two satellites: the Mercury Planetary Orbiter (MPO) realized by ESA and the Mercury Magnetospheric Orbiter (MMO) provided by the Japan Aerospace Exploration Agency (JAXA). The payload of the MPO is composed by 11 instruments. About half of the entire MPO data volume will be provided by the Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System" (SIMBIO-SYS) instrument suite. The SIMBIO-SYS suite includes three imaging systems, two with stereo and high spatial resolution capabilities, which are the Stereoscopic Imaging Channel (STC) and High Resolution Imaging Channel (HRIC), and a hyper-spectral imager in the Vis-NIR range, named Visible and near Infrared Hyper-spectral Imager (VIHI). In order to test and predict the instrument performances, a radiometric model is needed. It consists in a tool that permits to know what fraction of the incoming light is measured by the detector. The obtained signal depends on the detector properties (such as quantum efficiency and dark current) and the instrument transmission characteristics (transmission of lenses and filter strips, mirrors reflectivity). The radiometric model allows to correlate the radiance of the source and the signal measured by each instrument. We used the Hapke model to obtain the Mercury reflectance, and we included it in the radiometric model applied to the STC, HRIC and VIHI channels. The radiometric model here presented is a useful tool to predict the instruments performance: it permits to calculate the expected optical response of the instrument (the position in latitude and longitude of the filter footprints, the on-ground px dimensions, the on-ground speed, the smearing and the illumination angles of the observed points), and the detector behavior (the expected signal and the integration time to reach a specific SNR). In this work we derive the input flux and the integration times for the three channels of SIMBIO-SYS, using the radiometric model to obtain the source radiance for each Mercury surface area observed

    22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p, \u3b3)23Na

    Get PDF
    We investigate the impact of the new LUNA rate for the nuclear reaction 22Ne(p, \u3b3)23Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the premain sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0-6.0M 99 and metallicities Zi = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22Ne and 23Na AGB ejecta that drop from factors of 4310 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23Na, the uncertainties that still affect the 22Ne and 23Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredgeup, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available. \ua9 2016 The Authors

    Does Turbulence along the Coronal Current Sheet Drive Ion Cyclotron Waves?

    Get PDF
    Evidence for the presence of ion cyclotron waves (ICWs), driven by turbulence, at the boundaries of the current sheet is reported in this paper. By exploiting the full potential of the joint observations performed by Parker Solar Probe and the Metis coronagraph on board Solar Orbiter, local measurements of the solar wind can be linked with the large-scale structures of the solar corona. The results suggest that the dynamics of the current sheet layers generates turbulence, which in turn creates a sufficiently strong temperature anisotropy to make the solar-wind plasma unstable to anisotropy-driven instabilities such as the Alfvén ion cyclotron, mirror-mode, and firehose instabilities. The study of the polarization state of high-frequency magnetic fluctuations reveals that ICWs are indeed present along the current sheet, thus linking the magnetic topology of the remotely imaged coronal source regions with the wave bursts observed in situ. The present results may allow improvement of state-of-the-art models based on the ion cyclotron mechanism, providing new insights into the processes involved in coronal heating

    First inverse kinematics measurement of key resonances in the 22Ne(p, Îł)23Na reaction at stellar temperatures

    Get PDF
    In this Letter we report on the first inverse kinematics measurement of key resonances in the 22Ne(p,Îł)23Na{}^{22}\text{Ne}(p,\gamma)^{23}\text{Na} reaction which forms part of the NeNa cycle, and is relevant for 23{}^{23}Na synthesis in asymptotic giant branch (AGB) stars. An anti-correlation in O and Na abundances is seen across all well-studied globular clusters (GC), however, reaction-rate uncertainties limit the precision as to which stellar evolution models can reproduce the observed isotopic abundance patterns. Given the importance of GC observations in testing stellar evolution models and their dependence on NeNa reaction rates, it is critical that the nuclear physics uncertainties on the origin of 23{}^{23}Na be addressed. We present results of direct strengths measurements of four key resonances in 22Ne(p,Îł)23Na{}^{22}\text{Ne}(p,\gamma)^{23}\text{Na} at Ec.m._{{\text c.m.}} = 149 keV, 181 keV, 248 keV and 458 keV. The strength of the important Ec.m._{{\text c.m.}} = 458 keV reference resonance has been determined independently of other resonance strengths for the first time with an associated strength of Ï‰Îł\omega\gamma = 0.439(22) eV and with higher precision than previously reported. Our result deviates from the two most recently published results obtained from normal kinematics measurements performed by the LENA and LUNA collaborations but is in agreement with earlier measurements. The impact of our rate on the Na-pocket formation in AGB stars and its relation to the O-Na anti-correlation was assessed via network calculations. Further, the effect on isotopic abundances in CO and ONe novae ejecta with respect to pre-solar grains was investigated

    Radiometric calibration of the SIMBIO-SYS STereo imaging Channel

    Get PDF
    The STereo imaging Channel (STC) is a double wide-angle camera developed to be one of the channels of the SIMBIOSYS instrument onboard of the ESA BepiColombo mission to Mercury. STC main goal is to map in 3D the whole Mercury surface. The geometric and radiometric responses of the STC Proto Flight model have been characterized on-ground during the calibration campaign. The derived responses will be used to calibrate the STC images that will be acquired in flight. The aim is to determine the functions linking the detected signal in digital number to the radiance of the target surface in physical units. The result of the radiometric calibration consists in the determination of well-defined quantities: (1) the dark current as a function of the integration time and of the detector temperature, settled and controlled to be stable at 268 K; (2) the read out noise, which is associated with the noise signal of the read-out electronic; and (3) the fixed pattern noise, which is generated by the different response of each pixel. Once these quantities are known, the photon response and the photoresponse non-uniformity, which represents the variation of the photon responsivity of a pixel in an array, can be derived. The final result of the radiometric calibration is the relation between the radiance of an accurately known and uniform source, and the digital numbers measured by the detector

    In-flight radiometric calibration of the Metis Visible Light channel using stars and comparison with STEREO-A/COR2 data

    Get PDF
    Context. We present the results for the in-flight radiometric calibration performed for the Visible Light (VL) channel of the Metis coronagraph on board Solar Orbiter. Aims. The radiometric calibration is a fundamental step in building the official pipeline of the instrument, devoted to producing the calibrated data in physical units (L2 data). Methods. To obtain the radiometric calibration factor (ĂÎŒVL), we used stellar targets transiting the Metis field of view. We derived ĂÎŒVLby determining the signal of each calibration star by means of the aperture photometry and calculating its expected flux in the Metis band pass. The analyzed data set covers the time range from the beginning of the Cruise Phase of the mission (June 2020) until March 2021. Results. Considering the uncertainties, the estimated factor ĂÎŒVLis in a good agreement with that obtained during the on-ground calibration campaign. This implies that up to March 2021 there was no measurable reduction in the VL channel throughput. Finally, we compared the total and polarized brightness visible light images of the solar corona acquired with Metis and STEREO-A/COR2 during the November 2020 superior conjunction of these instruments. A general good agreement was obtained between the images of these instruments for both the total and polarized brightness
    • 

    corecore