59 research outputs found

    Amy Gilreath, Trumpet Guest Artist:Susan Slaughter, Trumpet

    Get PDF
    Kemp Recital Hall Tuesday Evening March 16, 1999 8:00p.m

    Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    Get PDF
    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images

    Velvet Brass

    Get PDF
    Capen Auditorium Edwards Hall Monday Evening March 31, 1997 8:00p.m

    A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth

    Get PDF
    Fetal growth restriction is a leading cause of perinatal morbidity and mortality that could be reduced if high risk infants are identified early in pregnancy. We propose a Bayesian model for aggregating 18 longitudinal ultrasound measurements of fetal size and blood flow into three underlying, continuous latent factors. Our procedure is more flexible than typical latent variable methods in that we relax the normality assumptions by allowing the latent factors to follow finite mixture distributions. Using mixture distributions also permits us to cluster individuals with similar observed characteristics and identify latent classes of subjects who are more likely to be growth or blood flow restricted during pregnancy. We also use our latent variable mixture distribution model to identify a clinically-meaningful latent class of subjects with low birth weight and early gestational age. We then examine the association of latent classes of intrauterine growth restriction with latent classes of birth outcomes as well as observed maternal covariates including fetal gender and maternal race, parity, body mass index (BMI), and height. Our methods identified a latent class of subjects who have increased blood flow restriction and below average intrauterine size during pregnancy who were more likely to be growth restricted at birth than a class of individuals with typical size and blood flow

    Preparing for Climatic Change: The Water, Salmon, and Forests of the Pacific Northwest

    Get PDF
    The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest’s key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 ◦C. Using output from eight climate models, we project a further warming of 0.5–2.5 ◦C (central estimate 1.5 ◦C) by the 2020s, 1.5–3.2 ◦C (2.3◦C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change

    Preparing for Climatic Change: The Water, Salmon, and Forests of the Pacific Northwest

    Get PDF
    The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest’s key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 ◦C. Using output from eight climate models, we project a further warming of 0.5–2.5 ◦C (central estimate 1.5 ◦C) by the 2020s, 1.5–3.2 ◦C (2.3◦C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change

    PolyQ-Dependent RNA–Protein Assemblies Control Symmetry Breaking

    Get PDF
    Dendritic growth in fungi and neurons requires that multiple axes of polarity are established and maintained within the same cytoplasm. We have discovered that transcripts encoding key polarity factors including a formin, Bni1, and a polarisome scaffold, Spa2, are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. This asymmetric distribution requires the mRNAs to interact with a polyQ-containing protein, Whi3, and a Pumilio protein with a low-complexity sequence, Puf2. Cells lacking Whi3 or Puf2 had severe defects in establishing new sites of polarity and failed to localize Bni1 protein. Interaction of mRNAs with Whi3 and Puf2 promotes enrichment of transcripts at established sites of polarized growth and clustering of polarity transcripts throughout the cell body. Thus, aggregation-prone proteins make functional assemblies to position polarity transcripts, and nonrandom positioning of transcripts is required for symmetry-breaking events. This reveals a physiological function for polyQ-driven assemblies in regulating cell polarity

    In Vivo Raman Spectroscopy for Biochemical Monitoring of the Human Cervix Throughout Pregnancy

    Get PDF
    Background The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. Objective The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. Study Design In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P \u3c .05). Finally, 6 individual components that comprise key biochemical constituents of the human cervix were measured to extract their contributions in spectral changes throughout pregnancy using a linear combination method. Patient factors including body mass index and parity were included as variables in these analyses. Results Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm−1) significantly decreased (P \u3c .05), while peaks corresponding to blood (1233 and 1563 cm–1) significantly increased (P \u3c .0005) in a linear manner throughout pregnancy. In the postpartum cervix, significant increases in peaks corresponding to actin (1003, 1339, and 1657 cm–1) and cholesterol (1447 cm–1) were observed when compared to late gestation, while signatures from blood significantly decreased. Postpartum actin signals were significantly higher than early pregnancy, whereas extracellular matrix proteins and water signals were significantly lower than early weeks of gestation. Parity had a significant effect on blood and extracellular matrix protein signals, with nulliparous patients having significant increases in blood signals throughout pregnancy, and higher extracellular matrix protein signals in early pregnancy compared to patients with prior pregnancies. Body mass index significantly affected actin signal contribution, with low body mass index patients showing decreasing actin contribution throughout pregnancy and high body mass index patients demonstrating increasing actin signals. Conclusion Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality caused by preterm birth

    Inactivation combined with cell lysis of Pseudomonas putida using a low pressure carbon dioxide microbubble technology

    Get PDF
    BACKGROUND Inactivation processes can be classified into non-thermal inactivation methods such as ethylene oxide and γ-radiation, and thermal methods such as autoclaving. The ability of carbon dioxide enriched microbubbles to inactivate Pseudomonas putida suspended in physiological saline, as a non-thermal sterilisation method, was investigated in this study with many operational advantages over both traditional thermal and non-thermal sterilisation methods. RESULTS Introducing carbon dioxide enriched microbubbles can achieve ∼2-Log reduction in the bacterial population after 90 min of treatment, addition of ethanol to the inactivation solution further enhanced the inactivation process to achieve 3, 2.5 and 3.5-Log reduction for 2%, 5% and 10 %( v/v) ethanol, respectively. A range of morphological changes was observed on Pseudomonas cells after each treatment, and these changes extended from changing cell shape from rod shape to coccus shape to severe lesions and cell death. Pseudomonas putida KT 2440 was used as a model of gram-negative bacteria. CONCLUSION Using CO2 enriched microbubbles technology has many advantages such as efficient energy consumption (no heat source), avoidance of toxic and corrosive reagents, and in situ treatment. In addition, many findings from this study could apply to other gram-negative bacteria
    • …
    corecore