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Summary
Fetal growth restriction is a leading cause of perinatal morbidity and mortality that could be
reduced if high risk infants are identified early in pregnancy. We propose a Bayesian model for
aggregating 18 longitudinal ultrasound measurements of fetal size and blood flow into three
underlying, continuous latent factors. Our procedure is more flexible than typical latent variable
methods in that we relax the normality assumptions by allowing the latent factors to follow finite
mixture distributions. Using mixture distributions also permits us to cluster individuals with
similar observed characteristics and identify latent classes of subjects who are more likely to be
growth or blood flow restricted during pregnancy. We also use our latent variable mixture
distribution model to identify a clinically-meaningful latent class of subjects with low birth weight
and early gestational age. We then examine the association of latent classes of intrauterine growth
restriction with latent classes of birth outcomes as well as observed maternal covariates including
fetal gender and maternal race, parity, body mass index (BMI), and height. Our methods identified
a latent class of subjects who have increased blood flow restriction and below average intrauterine
size during pregnancy who were more likely to be growth restricted at birth than a class of
individuals with typical size and blood flow.
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1. Introduction
We consider a latent variable model for identifying intrauterine growth restriction using
multiple longitudinal ultrasound measurements collected during pregnancy (Figure 1: S →
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η1 → y). Growth restriction during pregnancy, or intrauterine growth restriction, cannot be
observed directly, but ultrasound measurements of fetal size and blood flow are useful
indicators of this concept. Fetal size measurements, including the head circumference (HC),
abdominal circumference (AC), biparietal diameter (BPD) and femur length (FL), have be
used identify “growth restricted” individuals when one of these measurements falls below a
specific gestational-age adjusted threshold (Maulik, 2006). Women with high uterine and
umbilical artery blood flow resistance are at an increased risk for delivering a growth-
restricted infant because the fetus may not receive enough oxygen or nutrients during
pregnancy (Dugoff et al., 2005; Hugo et al., 2007).

Blood flow resistance can be measured using multiple Doppler ultrasound measurements on
different arteries (uterine and umbilical), at different locations (left and right), and at
multiple times during the pregnancy.

While many ultrasound measurements are available to diagnose intrauterine growth
restriction, it is not clear how best to combine and use all of the measurements. The most
common approach compares the measurements of the HC, AC, BPD, and FL to predicted
sizes for a gestational age based on population studies to define second trimester growth
restriction (e.g. Filly and Hadlock, 2000; Dugoff et al., 2005). This approach does not
address situations in which different measurements disagree. Other researchers have
suggested using a simple average of all of the fetal size measurements for prediction of
subsequent growth restriction (Ott, 1994). Instead, we aggregate the multiple ultrasound
measurements into underlying latent factors (Figure 1: η1 → y), which we postulate arise
from a fixed number of latent classes (Figure 1: S → η1).

We are interested in examining the association of growth restriction from the 15th to 24th
week of pregnancy with functions of birth weight and gestational age at delivery (Figure 1:
S → T). In general, populations with lower mean birth weight and earlier gestational age
have poorer infant survival, but closer inspection reveals that the increased risk is due to a
higher proportion of births in the lower tails of the birth weight and gestational age
distributions (Buekens et al., 2000). For birth weight in particular, Wilcox (2001) has
described the skewed distributions as arising from a “predominant” and (high-risk)
“residual” component that contains the long lower tails (Figure 2). In an attempt to identify
high-risk infants, outcomes such as low birth weight (< 2500 grams) and pre-term birth (<
37 weeks) have been studied extensively, but these dichotomies are prone to misclassify
individuals into the predominant and residual components. Instead, we develop a latent
variable model to identify a latent class of subjects who are more likely to belong to the
residual component and fall in the high-risk tails of the birth weight and gestational age
distributions (Figure 1: T → η21 → z1 and z2). Additionally, low birth weight can be due to
slow growth throughout pregnancy, so we also consider the association between intrauterine
growth restriction class and birth weight z-scores (Figure 1: S → z3), which are a
gestational-age-standardized measure of growth restriction at birth (Oken et al., 2003).

We allow the latent factors to follow finite mixture distributions to relax the assumption of
marginal normality of the growth measures and group individuals into latent classes. The
longitudinal ultrasound measurements allow us to identify intrauterine growth restriction
classes. Using the birth outcomes, we formalize the concept of “residual” and
“predominant” distribution components to identify a group of subjects who are more likely
to have low birth weight and early gestational age. We then examine the association between
classes of intrauterine growth restriction and (1) having clinically-relevant early gestational
age and lower birth weight, as measured by belonging to the “residual” class, and (2) growth
restriction at birth, as measured by birth weight Z-scores. Finally, we incorporate observed
covariates known to be related to fetal size including maternal race, parity (number of prior
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live births), BMI, and fetal gender by allowing the covariates to predict latent class
membership.

Latent variable models attempt to reduce dimensionality by summarizing several observed
variables into a smaller number of (continuous) latent factors or by assuming that each
subject can be classified into one of a number of fixed, known latent classes. Several latent
class models have been suggested to accommodate longitudinally-collected categorical data
by conceptualizing that they are indicative of an underlying latent ordinal state or nominal
latent class (Reboussin et al., 1999; Reboussin and Anthony, 2001; Huang and Bandeen-
Roche, 2004). Additionally, authors have proposed general growth mixture models
(GGMM) which assume that longitudinal measurements will follow a growth trajectory
given a latent class (Muthén and Shedden, 1999; Muthén et al., 2002; Elliott et al., 2005).
Our approach first aggregates non-commensurate longitudinal outcomes into a fixed number
of continuous latent factors while allowing the latent factors to follow mixture distributions.
In this way we allow the latent factors to follow latent trajectories where the mean and
variance of the latent factor is conditional on latent class. As in the GGMM, interest lies in
examining the association between latent classes and observed covariates, and our model
also allows for relationships among latent classes.

The remainder of this paper is organized as follows. In Section 2, we propose our general
model for latent variable mixture distributions and compare our method to previous
approaches. We provide a Bayesian approach to fitting such a model while focusing on our
fetal development application. Section 3 contains the results of our analysis, followed by a
discussion in Section 4.

2. Methods
2.1 Fetal Growth Model

To analyze fetal growth, we propose the following general latent variable mixture model
with covariates (Figure 1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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(8)

where Φ(·) is the normal cumulative distribution function and I(Si = k) is the indicator
function that takes a value of one if Si = k and zero otherwise. We assume that each of our
observed outcomes measured during pregnancy, yij (i = 1, … , n and j = 1, … , p1), follows a
normal distribution with a mean that is a function of observed covariates Wij(rj × 1) and
latent factors ηi1(q1 × 1) with parameter vectors Γj(rj × 1) and Λj(q1 × 1), respectively. The
τy,j depend on j because the yij may be measured on different scales for each j. Outcomes
measured at birth, zig(g = 1, … , p2), such as birth weight and gestational age, also follow a
normal distribution with a mean that is a function of latent immaturity (ηi2) with parameters
θg(q2 × 1) and latent class Si with covariates βg = [βg,1, … , βg,K]′. We allow ηi1(q1 × 1)
and ηi2(q2 × 1) to follow finite mixture distributions. It is often convenient to express
mixture models using a missing data formulation in which each ηi1 and ηi2 is presumed to
arise from a specific, but unknown, underlying component (Dempster et al., 1977).
Specifically, for ηi1 and ηi2, respectively, we introduce latent class allocation variables Si ∈
{1, … , K} where Pr(Si = k) = πs,k for early growth restriction and Ti ∈ {1, … , L} where
Pr(Ti = l) = πt,l for latent immaturity. This specification is useful for computational purposes
and allows us to naturally group subjects with similar latent variable characteristics. We can
then jointly examine possible associations between measured covariates xi and Si using
parameters ω as well as associations between Ti and Si using parameters α by following
Bayesian techniques for fitting probit regression models (Albert and Chib, 1993).

Latent variable and mixture models are over-identified and require parameter constraints for
identifiability and interpretation. One common approach sets the covariance matrices Σ1k
and Σ2l in (2) and (6) to be equal to the identity matrix so that all of the elements Λj and Θg
in (1) and (5) can be identified an interpreted as factor loadings. Instead, we estimate an
equivalent model in which Σ1k has diagonal elements (τ1,1,k, … , τ1,q1,k) and Σ2l has
diagonal elements (τ2,1,l, … , τ2,q2,l) with all covariance terms fixed to zero. This
specification requires fixing q1 factor loadings in Λ (where Λ is a stacked matrix of the Λj)
and q2 factor loadings in Θ (a stacked matrix of the Θj) to one so that each of the q1 latent
factors in η1 and q2 latent factors in η2 will have a scale that is commensurate with a
specific ultrasound or birth outcome. Such a specification aids in specifying appropriate
prior distributions (2.6) as well as easing interpretation of the latent factors. Elliott et al.
(2005) pursues an alternative approach in which Λ is assumed to follow a polynomial
function of known time points so that Σ1k can be estimated. Their approach may be more
appropriate when the longitudinal observations are measured at more time points than in our
application.

2.2 Mixture Distribution with Covariates
The sensitivity of parametric latent variable models to distributional assumptions limits their
general use, especially as the assumptions are often difficult to evaluate. Our data are further
complicated by the unusual distribution of gestational age at delivery, which has a long left
tail for early ages and a near truncation on the right due to medically-induced labor for
longer gestations (Figure 2). Because symmetry and normality are particularly unlikely to
hold in our example, we propose an alternative method in which the latent factors follow
mixture distributions. Proposed approaches that are robust to outliers (Lee and Xia, 2006)
would be appropriate if we had symmetrically heavy-tailed distributions. Early births are
particularly indicative of future problems, so that cutoffs at 37 (pre-term) and 32 (very pre-
term) weeks of gestation have been established in the reproductive health literature, with
gestational age at delivery treated as a binary outcome. Our mixture model approach will
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allow us to identify latent classes of subjects who are more likely to deliver early, without
limiting the analysis to these pre-defined cut points. We then propose a model for examining
the association between a latent growth restriction class, based on measures during
pregnancy, and latent immaturity.

To relax the marginal normality assumption, we allow the latent factors to follow finite

mixture distributions given by 

and  where  is a diagonal covariance matrix
with elements τ1mk. In our fetal growth example, we use a two-component mixture for early
growth restriction (K = 2) and a three-component mixture for latent immaturity (L = 3).

Latent class models are subject to additional identifiability complications due to the fact that
the likelihood is symmetric across the possible permutations of class membership (Stephens,
2000). Consequently, assignment to a particular class k during one iteration of the Gibbs
sampler may not have the same meaning in terms of model structure as assignment to class k
at another iteration of the Gibbs sampler. For the latent immaturity variable η2, we impose
the identifiability constraint that μ211 < μ212 < μ213 to deal with the “label switching”
problem and to ensure that subjects with the lower birth weights and earlier gestational ages
will be assigned to the first latent class Ti = 1.

We then propose a probit model for the probability of belonging to the immature group as a
stochastic function of early growth restriction class (Si)

(9)

where Φ is the normal cumulative distribution function. We also use a probit model to
examine the association between observed covariates and early growth restriction class, Pr
(Si = 2) = Φ(x′iωk), where xi(r × 1) includes covariates of interest with parameters ω (r×1).
In the fetal development example, we consider the covariates fetal gender and maternal race,
parity, gender, body mass index (BMI), and height. To fit these probit regression models, we
use the data augmentation algorithm of Albert and Chib (1993).

Our Bayesian approach for fitting finite mixture distributions is based on the work of
Diebolt and Robert (1994) and Richardson and Green (1997), but is complicated by needing
to model latent rather than observed variables. To model the association of latent group
membership with covariates, we utilize data augmentation. In this procedure, auxiliary data
augment the observed data so we can use both the auxiliary and observed data to calculate
the posterior distribution of the parameters of interest (van Dyk and Meng, 2001).
Alternatively, Fokoue (2005) has proposed an EM algorithm for a normal latent variable
mixture model with covariates, but does not model associations between the latent classes.

2.3 Model selection
A complication in mixture distribution models with a finite number of components is the
method used to select the number of mixture components. A more general model could treat
the number of mixture components as parameters to be estimated (Richardson and Green,
1997) or use a Dirichlet process in which the number of components is countably infinite
(Dunson, 2006), but neither of these approaches would be able to readily incorporate
covariates that predict class membership. When possible, we prefer an approach for
selecting the number of mixture components that is guided by the application. For example,
in the reproductive epidemiology literature birth weight and gestational age have been

Slaughter et al. Page 5

Biometrics. Author manuscript; available in PMC 2013 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



described as arising from a predominant and residual component that is indicative of early
gestational age and low birth weight (Wilcox, 2001; Buekens et al., 2000). We use a three
component mixture for latent immaturity class (Ti) in order to identify the residual
distribution, and thus identify individuals who are at increased risk for mortality and other
forms of morbidity. In our data, a mixture with only two components did not identify the
residual group, and a model with more than three components only improves the fit of the
predominant distribution and introduces a needlessly complex interpretation.

When the applied problem is not helpful in selecting the number of mixture components,
some statistical tools are available. Bayesian approaches for comparing complex hierarchical
models in which the number of parameters is not clearly defined include using the deviance
information criterion (DIC; Spiegelhalter et al., 2002), but, for mixture models in particular,
the DIC is thought to favor overly-complex models (Richardson, in discussion of
Spiegelhalter et al., 2002; Celeux et al., 2006). Alternatively, we used posterior prediction
intervals to determine if too few classes were chosen, leading to a model that under fits the
data (Lynch and Western, 2004).

2.4 Longitudinal Ultrasound Measurements
In our fetal development example analysis, we observe eighteen total ultrasound
measurements, which we summarize with three underlying latent factors, ηi1 = [ηi11, ηi12,
ηi13]′. Four fetal size measurements are obtained at two time points. Specifically, the
abdominal circumference is measured at an approximate 15-week ultrasound (yi,1) and 24-
week ultrasound (yi,5). Head circumference (yi,2 and yi,6), femur length (yi,3 and yi,7), and
biparietal diameter (yi,4 and yi,8) are also measured at these two time points. We model the
correlation between the fetal size outcomes using the latent early fetal growth variable
(ηi11). Additionally, blood flow resistance is measured by the pulsatility index (PI) and
systolic-diastolic ratio (S/D) in the left and right uterine arteries at two time points (yi,9, … ,
yi,16), and the S/D and resistance index (RI) measure resistance in the umbilical artery (yi,17,
yi,18) around week 24. The highest correlations (all ρ ≥ 0.90) were observed among the S/D
and PI (or RI for umbilical artery) within a given artery, location, and time, and the lowest
correlation between the uterine and umbilical artery measurements (Supplementary Web
Table 1). We model the correlation between the uterine artery measurements using a second
latent factor (ηi12), and consider the umbilical artery S/D and RI to be error-prone
realizations of a third latent factor (ηi13). We refer to these three latent factors as,
collectively, measuring latent early growth restriction.

We formally express the relationship of the longitudinal ultrasound measurements with
latent factors and time since the last menstrual period (LMP, denoted W) using the
measurement model

(10)

(11)

(12)

where , j = 1, … , 18 and are independent of ηi11, ηi12, and ηi13. The
ultrasound size measurements (j = 1, … , 8) increase with time, so we allow them to be
functions of the reported days from LMP to the ultrasound. Plots of the blood restriction
measurements (j = 9, … , 18) versus time since LMP showed no change in restriction over
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the range of times observed in our study, so we do not include any Γ parameters or time
covariates in (11) or (12). Additionally, in (10), we restrict λj = λj+4, γ0,j = γ0,j+4, γ1,j =
γ1,j+4, γ2,j = γ2,j+4, and τj = τj+4, j = 1, … , 4, which assumes separate growth curves for the
longitudinally-collected HC, FL, AC, and BPD size measurements. Our measurement model

assumes that cov(yij, yij′|Si = k) is given by either  for j = 1, … , 8, or  for j

= 9, … , 16, or  for j = 17, 18 with all other covariances being zero. For
identifiability, we fix γ0,4 = γ0,16 = γ0,18 = 0 and λ4 = λ16 = λ18 = 1 so that ηi11, ηi12, and
ηi13 will have location and scale that is commensurate with the biparietal diameter (yi,4), S/
D in the right uterine artery at week 24 (yi,16), and S/D in the umbilical artery (yi,18),
respectively.

2.5 Cross-sectional birth outcomes
For the outcomes measured at birth, we propose the following form for the measurement
model (5) for birth weight (zi1), gestational age at delivery (zi2), and birth weight Z-score
(zi3). The correlation among birth weight and gestational age is captured using one latent
immaturity variable, ηi2 = ηi21,

(13)

(14)

(15)

with independent error terms δig, g = 1, 2, 3. We fix θ02 = 0 and θ12 = 1 in (14) so that ηi21
has a location and scale that is commensurate with gestational age at delivery. Birth weight
Z-scores are calculated by comparing the observed birth weight and gestational age to the
expected weight for age from from approximately 6.7 million US births in 1999 and 2000
(Oken et al., 2003). For any given gestational age, the birth weight Z-scores follow a
standard normal distribution relative to the reference population (but not necessarily in our
PIN group) so that individuals with negative values are believed to have some degree of
growth restriction at birth. By definition, birth weight Z-scores are independent of
gestational age, so we do not allow zi3 to be a function of ηi21. The latent factor ηi21 is thus
related to the timing of delivery so that smaller values will be indicative of earlier
gestational ages and lower birth weight due to earlier age.

2.6 Prior distributions
To complete a Bayesian specification of the model, prior distributions must be specified for
each parameter. In general, we use proper but appropriately vague priors for all parameters
to obtain complete conditionals that are of known form. We use conditionally conjugate

priors , , ,

, , and .
We then choose μ0,Λj = μ0,Γj = μ0,Θg = μ0,βk = 0, Σ0,Λj = Σ0,Γj = Σ0,Θj = Σ0,βk = 1002I, and
cy,j = dy,j = cz,j = dz,j = .01 for every j where 0 is a conforming vector of zeros and I is a
conforming identity matrix. We also assume p(ω) ~ N (μ0,ω, Σ0,ω and p(α) ~ N (μ0,α, Σ0,α
with μ0,ω = μ0,α = 0 and Σ0,ω = Σ0,α = 1002I.
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Constraining latent immaturity (η2) to have the same location and scale as gestational age at
delivery simplifies specifying appropriate prior distributions for the mixture component
means. For l = 1, 2, 3 we assume p (μ21l) ~ N (ν21l, R2) I (μ21,l−1 < μ21l < μ21,l+1) where
μ210 = −∞ and μ214 = ∞. Based on previous research by Wilcox (2001) and Gage (2002),
we choose ν211 = 245, ν212 = ν213 = 280, and R = 10 so that, a priori, we expect that the
residual distribution will have a mean of 245 ± 10 (days) and the predominant distribution a
mean of 280 ± 10. For the mixture component means of early growth restriction (η1), we
follow the suggestions of Richardson and Green (1997) where, in the absence of previous
studies, prior parameters are specified using the observed means and ranges of the three

ultrasound variables y4, y16, and y18. We use  (m = 1, 2, 3 and k = 1,
2) with observed ranges R1 = 10, R2 = 2.17, and R3 = 0.32. The ν1mk (ν1m1 = ν1m2) are the
observed means of y4 (after adjusting for time since LMP), y16, and y18.

We use a hierarchical structure for specifying the prior distribution of each τ1mk and τ21l.
Specifically, we allow p (τ1mk|b0,m) ~ Γ (a0,m, b0,m) and p (τ21l|b0) ~ Γ (a0, b0) with b0,m ~

Γ (g0,m, h0,m) and b0 ~ Γ (g0, h0). We choose a0,m = a0 = 2, g0,m = g0 = 0.2, ,
and h0 = 10 * R−2 where Γ(a, b) is the gamma distribution with mean a ÷ b and variance a ÷
b2. By choosing a0,m > 1 > g0,m (and a0 > 1 > g0) we express the general belief that, for each
k (and l), the τ1mk (and τ21l) are similar, but we have no information on their absolute size.
Finally, we assume that πs = [πs1, πs2]′ and πt = [πt1, πt2, πt3]′ follow independent,
symmetric Dirichlet distributions, p(πs) ~ D(d1, … , d1) and p (πt) ~ D(d2, … , d2) and
choose d1 = d2 = 1 to be appropriately vague.

3. Results
To perform the analysis, we used Gibbs sampling (Geman and Geman, 1984), conducted in
Matlab, with the complete conditionals given in the Supplementary Web Appendix. We ran
five chains from disparate starting values and monitored convergence using the CODA
package for R (R Development Core Team, 2004). After removing an initial burn in of
15,000 iterations, all parameters were judged to have converged by the Gelman-Rubin and
Geweke diagnostic measures (Geweke, 1991; Gelman and Rubin, 1992). For example, all
Gelman-Rubin statistics (R̂) were found to be less than 1.01, where R̂ = 1 at convergence
and values less than 1.2 are generally considered sufficient for convergence (Gelman et al.,
2004). We used the remaining 35,000 iterations for inference, and summarize our results
using posterior means and 95% credible intervals (CrI) for parameters or functions of
parameters (e.g. odds ratios) that are of interest.

We applied our methods to 532 subjects in the the Pregnancy, Infection, and Nutrition (PIN)
cohort study of prenatal influences on pregnancy outcomes (Savitz et al., 1999). We
included all singleton, live born infants who had complete ultrasound, birth weight,
gestational age, and covariate information in this analysis. Characteristics of the study
subjects are presented in Table 1. As expected, birth weight and gestational age had skewed
distributions toward early birth and low weight, respectively.

For early growth restriction, our latent variable mixture model allowed two groups of
subjects based on their multiple ultrasound measurements of fetal size and blood flow
resistance. In an alternative three class mode, too few subjects belonged to the third group
for any meaningful interpretation. For ease of exposition, we refer to these groups as the
“normal” and “restricted” groups. On average, a majority of subjects belong to the normal
group (posterior mean = 67%, 95% CrI = [59%,74%]). Figure 3 displays a comparison of
these two groups for the four measures of fetal size, the PI at various times and locations,
and the RI obtained in the umbilical artery at week 24 by Doppler ultrasound. Controlling
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for time since LMP, the early growth restricted group had, on average, smaller fetal size
measurements and greater resistance to blood flow than the normal group. The restricted
group also had significantly larger S/D ratios, indicating greater blood flow resistance, at all
times and locations (results not shown). Furthermore, we found evidence of growth
restriction at birth in the early growth restricted group. The average birth weight Z-score was
−0.34 (95% CrI: [−0.51, −0.18]) in the early growth restricted group and 0.11 (95% CrI:
[0.00, 0.22]) in the normal group.

We also examined the association of fetal gender and maternal black race, parity, height, and
BMI with group membership. A one inch increase in maternal height was associated with a
0.82 (95% CrI: [0.57,1.00]) fold decrease in the odds of belonging to the early growth
restricted group. Black race (posterior odds = 1.33, 95% CrI: [0.77,2.14]), being nulliparous
(posterior odds = 1.12, 95% CrI: [0.74,1.65]), and female infant gender (posterior odds =
1.41, 95% CrI: [0.91,2.12]) were not significantly associated with belonging to the early
growth restricted group. We also found no linear association between group membership
and BMI, but also examined BMI by previously established categories ranging from
underweight to obese (WHO Expert Committee, 1995). Children of underweight (BMI <
18.5 kg/m2) and obese women (BMI ≥ 30 kg/m2) had a relatively high 0.36 (95% CrI:
[0.23,0.49]) and 0.38 (95% CrI: [0.27,0.50]), respectively, posterior probability of belonging
to the early growth restricted group. Children of women with a BMI in the normal range
(BMI ∈ [18.5, 25) kg/m2) or moderately obese women (BMI ∈ [25, 30) kg/m2) had lower
posterior probabilities of 0.31 (95% CrI: [0.23,0.39]) and 0.31 (95% CrI: [0.18,0.45]),
respectively.

Particular interest lies in identifying fetuses that have a tendency to be born the most early
and with the least weight, which was our motivation in considering latent immaturity classes
(T). To help understand the type of subjects who belong to this immaturity class, Figure 4
displays the posterior probability of belonging to the residual distribution given birth weight
and gestational age. A priori, each subject had an equal probability of belonging to the
residual distribution, but the posterior distribution of class membership is strongly related to
gestational age and birth weight. All subjects born before 224 days (very pre-term) and
approximately 30% of subjects born before 259 days (pre-term) are assigned to the
immaturity latent class. This corresponds to a 3.7% (95% CrI: [1.2%, 10.4%]) marginal
probability of belonging to the residual component. For birth weight, about 90% of subjects
with very low birth weight (< 1500g) and 40% of subjects with low birth weight (< 2500 g)
belong to the latent class indicative of the residual component.

Finally, we examined the association between our two latent class variables. Using a probit
regression model, individuals in the restricted latent class during the second trimester had
3.45 fold greater odds (95% CrI: [0.86,58.9]) of belonging to the residual component of the
distribution at birth. The posterior parameter estimates for α1 and α2 as defined in (9) are
given in Supplementary Web Figure 5 along with the posterior estimates of belonging to the
residual distribution conditional on growth restriction during pregnancy. The large posterior
odds ratio indicates that belonging to the restricted class is potentially an important predictor
of future immaturity, but the credible interval is too wide to make a definitive statement in
this dataset.

In our analysis, our primary inference is about latent variables and latent classes, and we
make a number of distributional assumptions, so it is important to evaluate the fit of our
model. Our latent variable mixture distribution approach fits the observed birth weight and
gestational age distributions functions well. Figure 2 contains a histograms of the observed
birth weight and gestational age with a line indicating our model fit. Supplementary Web
Figure 1 depicts the observed and estimated cumulative distribution functions (CDFs) for
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gestational age at delivery while Supplementary Web Figure 2 contains these CDFs for birth
weight. Tail areas are magnified in the figures and indicate a good model fit in this area. We
also calculated the posterior predictive distributions for observed data and then compared
these distributions to our observed data graphically (Lynch and Western, 2004).
Supplementary Figure 3 shows the posterior distributions and observed data for the S/D ratio
obtained in the right uterine artery at week 15 for 90 subjects. Our model appears to fit the
observed data well; posterior predictive plots for other ultrasound measurements, birth
outcomes, and subjects also do not indicate a lack of fit.

4. Discussion
We develop a Bayesian approach for analyzing multiple correlated pregnancy outcomes
measured during pregnancy by ultrasound and collected routinely at birth using latent
variable mixture models. We found evidence in favor of the existence of a latent class of
subjects who were more likely to have smaller fetal size measurements and restricted blood
flow during the second trimester. These subjects who appeared growth restricted during
pregnancy were (1) more likely to have unusually low birth weight for their gestational age
(growth restriction at birth), and (2) may be at increased risk for belonging to the residual
distribution characterized by earlier gestational age and lower birth weight due to early
delivery. Finally, we did not find that height, BMI, black race, gender, or parity were
associated with growth restriction during th second trimester of pregnancy.

Our mixture distribution approach is particularly appropriate for formalizing the concept of
predominant and residual components of the birth weight and gestational age distributions
developed by Wilcox (2001). Using the T latent class, we estimated that approximately
3.7% of births lie in the residual distribution, which is in the 2% to 5% range previously
estimated for birth weight (Wilcox, 2001). A population with a higher proportion of births in
the residual component will be at an increased risk for infant mortality and morbidity, but
two populations may differ in their predominant distributions without a corresponding
change in outcome (Shan and Ohlsson, 2002; Harder et al., 2007). Common approaches
assess mean changes in birth weight or gestational age using linear regression models (e.g.
Curry et al., 1998; Glinianaia et al., 2004), but such models assume that shifts in the mean
will correspond to an increase in the percentage of the population at particularly high risk.
From our perspective, changes in the mean could be due to a shift in the predominant
component of the distribution, or a more concerning increase in the proportion of babies
born in the residual component, or a combination of the two (Buekens et al., 2000). Our
model is able to identify individuals who, based on several longitudinal second trimester
ultrasound measurements, are at increased the risk of falling in the residual component at
birth.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Path diagram illustrating the dependencies in the proposed fetal growth model. Circles
represent latent variables, squares indicate observed variables, and arrows show association.
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Figure 2.
Joint and marginal distributions of birth weight and gestational age at delivery. The fit of our
model is given by the solid line on the histograms.
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Figure 3.
Differences in ultrasound measurements of fetal size, blood restriction, and birth weight Z-
scores for the restricted and normal latent classes. Fetal size measurements include the
abdominal circumference (AC), biparietal diameter (BPD), femur length (FL), and head
circumference (HC). Difference are estimated using parameter functions λ1(μ112 − μ111),
λ2(μ112 − μ111), λ3(μ112 − μ111), and (μ112 − μ111), respectively. The pulsatility index in
the left and right uterine arteries at the week 15 and week 24 ultrasound are estimated by
λ10(μ122 − μ121), λ12(μ122 − μ121), λ14(μ122 − μ121), and (μ122 − μ121). The resistance
index in the umbilical artery is given by (μ132 − μ131).
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Figure 4.
Posterior probability of being assigned to the residual distribution latent class (T = 1) by
gestational age and birth weight.
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Table 1

Percentiles (continuous) or percentages(dichotomous) of variables summarizing the 532 PIN subjects studied

Characteristic Percent 509010

Birth weight (grams) 337039912624

Gestational age (days) 276287257

Maternal height (in) 656862

Maternal BMI (kg/m2) 23.534.419.5

Small for gestational age 8.7%

Pre-term birth (< 37 weeks) 10.7%

Very pre-term birth (< 32 weeks) 1.3%

Low birth weight (< 2500 g) 7.1%

Very low birth weight (< 1500 g) 1.1%

Maternal Black Race 17.5%

Parity ≥ 1 55.1%

Female infant gender 47.8%
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