16 research outputs found

    NordAqua, a Nordic Center of Excellence to develop an algae-based photosynthetic production platform

    Get PDF
    NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.Peer reviewe

    NordAqua, a Nordic Center of Excellence to develop an algae-based photosynthetic production platform

    Get PDF
    NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.</p

    Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity

    No full text
    In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer

    Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity

    Get PDF
    In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer

    OK potet - Bakterier Overvåking og kartlegging av lys og mørk ringråte i norsk produksjon av mat- og industripotet. Sesong 2020.

    Get PDF
    Lys ringråte på potet, forårsaket av bakterien Clavibacter sepedonicus (Cs), har gjort mye skade i norsk potetproduksjon siden første påvisning i landet i 1964. Den er også grunnen til at man ikke kan eksportere poteter fra Norge. Siden 1965 har Norge hatt sitt eget, nasjonale regelverk for bekjempelse av bakterien. Man har tidligere ( før 1980) flere ganger uten hell forsøkt å utrydde sykdommen fra flere deler av landet. Dette fordi mangelen på en påvisningsmetode med tilstrekkelig sensitivitet den gangen gjorde det vanskelig å skaffe de nødvendige mengder sykdomsfrie settepoteter til utskiftingen...publishedVersio

    OK potet - Bakterier Overvåking og kartlegging av lys og mørk ringråte i norsk produksjon av mat- og industripotet. Sesong 2020.

    Get PDF
    Lys ringråte på potet, forårsaket av bakterien Clavibacter sepedonicus (Cs), har gjort mye skade i norsk potetproduksjon siden første påvisning i landet i 1964. Den er også grunnen til at man ikke kan eksportere poteter fra Norge. Siden 1965 har Norge hatt sitt eget, nasjonale regelverk for bekjempelse av bakterien. Man har tidligere ( før 1980) flere ganger uten hell forsøkt å utrydde sykdommen fra flere deler av landet. Dette fordi mangelen på en påvisningsmetode med tilstrekkelig sensitivitet den gangen gjorde det vanskelig å skaffe de nødvendige mengder sykdomsfrie settepoteter til utskiftingen..

    Presence of E6 and E7 mRNA from Human Papillomavirus Types 16, 18, 31, 33, and 45 in the Majority of Cervical Carcinomas

    No full text
    The oncogenic potential of the human papillomavirus (HPV) early genes E6 and E7 is well established and a source of interest with regard to HPV testing for cervical carcinoma. Here we present a study performed with 204 histologically confirmed invasive cervical squamous cell carcinomas (SCCs) in which we evaluated the HPV E6 and E7 mRNA detection assay PreTect HPV-Proofer for detection of high-risk HPV types 16, 18, 31, 33, and 45. For further evaluation, detection of E6 and E7 mRNA from HPV types 35, 52, and 58 by real-time multiplex nucleic acid sequence-based amplification was also included. For comparison and to assess the overall prevalence of various HPV types, samples were also tested for HPV DNA by both consensus and type-specific PCR, reverse line blotting, sequencing, and in situ hybridization. The overall prevalence of HPV was 97%. HPV E6 and E7 transcripts were detected in 188 of 204 (92%) biopsy specimens, of which 181 contained one of the following HPV types: 16, 18, 31, 33, or 45. Consensus PCR and type-specific PCR detected HPV in 187 of 204 and 188 of 204 (92%) specimens, respectively. In conclusion, this study verifies the presence of HPV E6 and E7 mRNA in SCCs and demonstrates that HPV infections among Norwegian women with SCCs are limited mainly to the five high-risk types, 16, 18, 31, 33, and 45. This, together with the fact that PreTect HPV-Proofer detects the HPV oncogenic transcripts, suggests that the assay is a valuable approach in the field of HPV detection in cervical carcinoma
    corecore