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To meet increasing demand for animal protein, swine have been raised in large Chinese

farms widely, using antibiotics as growth promoter. However, improper use of antibiotics

has caused serious environmental and health risks, in particular Antimicrobial resistance

(AMR). This paper reviews the consumption of antibiotics in swine production as well

as AMR and the development of novel antibiotics or alternatives in China. The estimated

application of antibiotics in animal production in China accounted for about 84240 tons in

2013. Overuse and abuse of antibiotics pose a great health risk to people through food-

borne antibiotic residues and selection for antibiotic resistance. China unveiled a national

plan to tackle antibiotic resistance in August 2016, but more support is needed for the

development of new antibiotics or alternatives like plant extracts. Antibiotic resistance

has been a major global challenge, so international collaboration between China and

Europe is needed.

Keywords: antibiotics, antimicrobial resistance, bacteria, China, human and animal health, swine production

INTRODUCTION

Over the last decades, China’s economy has grown very quickly. The gross domestic product (GDP)
increased from 1.21 trillion US$ in 2000 to 10.35 trillion US$ in 2014 (Figure 1, World Bank,
2016). During the same period, Chinese production of meat, eggs, and milk has rapidly increased,
and this will continue—especially for pork (1–3). Pork is one of the most important sources of
animal protein in the country, and its production has jumped from around 40 million tons in
2000 to approximately 56 million tons in 2014 (Figure 1, USDA, 2016). The effects of the global
financial crisis in 2007 and swine flu in 2011 caused an AMRupt production decline in these 2
years. However, production of swine quickly rebounded in the subsequent years. Concurrently,
China’s pork consumption increased from 2000 to 2014, with some drops in 2007 and 2011. Since
2012, pork consumption has been slightly higher than production, indicating that the pork demand
of Chinese consumers has exceeded the domestic production.

Along with a rapid increase in pork production, both the number and the size of intensive swine
farms have grown. The number of big farms with thousands of swine has increased markedly. The
percentage of big swine farms, with herd sizes of more than 3,000, increased from 5% in 2003 to
14% in 2010. In the same period, the proportion of small farms, with herd sizes of less than 50,
nearly halved, from 71% to 36% (China Animal Industry Yearbook 2004–2011).

Several recent studies detail antibiotic use in animal production (3–6) and the risk this poses in
the form of antibiotic resistance (7–9). The current study focuses on the important emerging public
health challenges as a result of overuse or abuse of antibiotics in swine production in China. It also
outlines the future challenges for the new antibiotics and alternatives.
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FIGURE 1 | Gross domestic production (GDP), pork production

and consumption in China from 2000 to 2014 (data source: World Bank http://

data.worldbank.org/country/china and USDA Foreign Agricultural Service

http://www.fas.usda.gov/).

ANTIBIOTIC USAGE IN SWINE
PRODUCTION IN CHINA

With the shift from small to large swine feeding operations and
the increase in overall pork production, there is growing concern
about the adverse consequences such as swine health and welfare,
disease spreading of large-scale animal production (1). Because
the high density of animals in big swine farms exacerbates the
risk of quick spread of infectious diseases, farmers in China have
responded by using higher amounts of antibiotics. This, in turn,
has led to growing concerns regarding overuse and abuse of
antibiotics for intensive swine production, especially the health
risks (3, 10, 11).

Penicillin was discovered in the 1940s. Since then, antibiotics
have changed the treatment of bacterial infections for both
humans and animals. Antibiotics were first added to feed for
broiler poultry to prevent microbial diseases in the 1940s (12).
They were then rapidly used for the same purpose in feed
for other food animals, first in the USA and later in other
developed countries and developing countries such as China
(2). Antibiotics can aid in different ways. When antibiotics are
used at low (sub-therapeutic) levels in feed, they can improve
growth rate by reducing mortality and disease. Thus, conversion
of feed to weight gain becomes more efficient. Antibiotics can
further prevent disease at intermediate levels, whereas high
(therapeutic) levels of antibiotics are used to treat diseases (13–
15). Antibiotics are widely used in animal husbandry as low-cost
growth promoters in more than half of the world’s countries (7).

As the world’s largest pork producer and consumer,
China uses a massive amount of antibiotics to support its
production (3). Some studies have been conducted to identify
the antibiotics used in China’s pig farms (16–23). These
studies report the extensive use of the major antibiotic classes
of sulphonamides, tetracyclines, fluoroquinolones, macrolides,
and β-lactams.

Antibiotics have been widely adopted for use in food animals,
but reliable data about the quantity and patterns of use (e.g., dose

and frequency) for food animals alone are not easily available
in China or other developing countries. It is very challenging to
make an accurate calculation of antibiotic use in food animals.
Studies have adopted different classifications for therapeutic use,
nontherapeutic use, or a combination of the two. Most available
data lack clear definition of therapeutic vs. nontherapeutic uses,
and this ambiguity clearly erodes reliability (24). Based onmodels
developed from American data (25), Krishnasamy et al. (24)
estimated that 38.5 million kg of antimicrobials were consumed
in China’s pork and poultry production in 2012. Among all
antibiotics, tetracyclines are the most widely consumed in
swine production. Zhang et al. (23) performed a market survey
on the usage of the 36 main antibiotics in China including
sulfonamides, tetracyclines, fluoroquinolones, macrolides, β-
lactams (penicillins and cephalosporins), chloramphenicols,
lincomycin, and others. They found that the total amount of
antibiotics used for China’s swine farming was 48.4 million
kg in 2013, which is higher than the result of Krishnasamy
et al. (24). Of all antibiotics consumed in China’s swine
farming, fluoroquinolones and β-lactams contributed more
than half.

Moreover, there is a clear geographic heterogeneity for
antibiotic consumption in China. Antibiotic consumption
hotspots appear in Southwest China (Sichuan), Central China
(Hunan), North China (Henan and Hebei) and the southeast
coast (Fujian, Guangdong and Guangxi) in China. In particular,
Sichuan province has the highest swine density and therefore
carries the most serious risks to environment and health (23).
Other areas have also seen significant developments in recent
years. For example, Xinjiang Uyghur Autonomous Region, the
provincial level region with the largest area in Northwest China,
is located in the center of the Eurasian continent. It is in the core
area of “The Silk Road Economic Belt” and plays an important
role in this program. Pork production in Xinjiang increased
from 0.025 million tons in 1978 to 0.231 million tons in 2010
(Statistical Yearbook of Xinjiang in 2011). Despite a lack of
data on antibiotic consumption in swine farms in Xinjiang, the
concentration and detection rate of antibiotic residue in swine
manure samples were higher than those of chicken manure and
cow dung. The concentration of tetracycline in swine manure
was highest, followed by sulfonamides and quinolones (26,
27). Additionally, international trade with Central Asian and
European countries is increasing along the Silk Road, which may
worsen the spread of antibiotics. In Lake Aibi, 12 species of 14
kinds of antibiotics were detected and detection rates of four
kinds of antibiotics were 100% in water samples, with highest
average concentration of 54.37 ng L−1 (28, 29).

China is tackling the overuse of antibiotics and the AMR
problem using different approaches, including educating farmers
about AMR caused by excessive use of antibiotics in animal
farming, swiftly banning the use of colistin as a feed additive in
animal production (30), reducing the list of approved antibiotics
for animal application, promoting the use of alternative feed
additives such as organic acids (e.g., Selko R©-pH, http://selko.
com), improving the management of animal husbandry and
animal welfare, and law enforcement accompanied by an effective
surveillance system [(3), http://www.moa.gov.cn/].
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ANTIBIOTIC RESISTANCE AND THE RISK
TO HUMAN HEALTH

The overuse and abuse of antibiotics cause environmental
pollution, for example the contamination of manure, soil and
water (10, 31). Worse, improper use of antibiotics brings risk
to human health through food-borne antibiotic residues and
selection for AMR, and a greater ability of certain bacteria to
resist the effect of antibiotic treatments (7). The causes of AMR
are complex, but there is growing scientific evidence suggesting
that low-dose, prolonged courses of antibiotic use for animal
husbandry accelerated the emergence and spread of resistant
bacteria (32–34). In food animal husbandry, AMR can spread
not only by direct contact, but also indirectly (Figure 2). Direct
effects are those that can be causally linked to contact with
antibiotic-resistant bacteria from swine. Indirect effects are those
that result from contact with resistant organisms that have been
spread through food, water, and animal waste application to
soil (37).

Many antibiotic classes are used in both swine husbandry
and human health care. Therefore, the emergence and spread
of resistance to these antibiotics will likely limit the therapeutic
options for human diseases. Even worse, this kind of AMR
can prolong illness and cause serious disability and ultimately
death (32, 33).

In the last decades, AMR has become a global challenge for
human health and welfare. In particular, it is a serious problem
in China where antibiotics have been overused or misused
in livestock husbandry and human health care (38–41). For
example, the OqxAB efflux pump, encoded by the genes oqxA
and oqxB, has been found to be one of the mechanisms of
plasmid-mediated quinolone resistance (PMQR) (42–44). Zhao
et al. (45) investigated the prevalence and dissemination of oqxAB
in Escherichia coli (E. coli) isolates from swine, their environment
and farmworkers in China. The oqxA gene was present in around
39.0% of E. coli isolates. About 46.3% of E. coli isolates from
swine farms were positive for oqxA. Approximately 43.9% of
E. coli isolates from the swine farm environment were also
positive. In addition to animal E. coli isolates, oqxAB was found
in 30.3% of human commensal E. coli isolates. Because these
farmworkers were without previous antimicrobial treatment or
hospital admission, this indicated the transmission of oqxAB to
humans. Compared with results from Sweden (1.8%) and South
Korea (0.4%) (46, 47), the prevalence of oqxAB in E. coli isolates
was much higher (39.0%) in China (45).

A further example has been reported by Zhang et al. (48),
who researched the occurrence of the aac (3)-IV gene, which
confers resistance to apramycin, an antibiotic used in agriculture
but not for humans, in Northeast China. Unfortunately, they
found workers who carried apramycin resistance genes in all
swine farms where apramycin was used as an antibiotic growth
promoter. The same was present in swine isolates. Similarly, Ho
et al. (49) investigated gentamicin resistance in Hong Kong. They
found that 84.1% of human samples and 71.4% of swine samples
contained the aaaC2 gene for gentamicin resistance. Polymyxin
resistance was identified as being due to the plasmid-mediated
mcr-1 gene (50). Liu et al. (51) investigated the mcr-1 gene in

swine, pork and inpatients in five provinces in China during the
period 2011–2014. They found mcr-1 in E. coli isolates collected
from 17.7% of pork samples, 20.23% of swine samples, and 1.40%
of inpatient samples with infection. Similar studies have also been
conducted in Xinjiang. For example, Xia et al. (52) collected
543 fecal samples from a large-scale swine farm and isolated
454 E. coli isolates. They found that 64.5% of the E. coli isolates
showed resistance to 3–9 antimicrobials, especially to ampicillin
and amoxicillin.

THE DEVELOPMENT OF
NEW ANTIBIOTICS

Concern about antibiotic resistance has escalated in the last years.
In 1986, Sweden became the first country in the world to ban the
use of some antibiotics in animal feeds (53). In 2006, European
Union (EU) member nations started to ban all antibiotic growth
promoters according to EC Regulation No. 1831/2003 (14). As
the largest developing country with a growing demand for meat
protein, China has not yet completely prohibited the use of
antibiotics as growth promoters. Considering the big risk for
antibiotic pollution in the environment (soil and water) and
potential resistance, more research is urgently needed for the
development of new antibiotics or, ideally, alternatives.

New Antibiotics
During the past two decades, efforts to develop new antibiotics
have met with some success (54). However, due to their much
higher costs compared to the older antibiotics, many have been
gradually pulled from the market. Therefore, new antibiotics are
still needed to tackle the worsening risk of antibiotic resistance.

Several approaches have been applied to identify new
antibiotics or augment currently licensed antibiotics: (1) natural
or synthetic compounds as inhibitors of multidrug efflux pumps,
(2) small-molecule inhibitors of bacterial transcription factors,
and 3) antisense inhibition of multidrug transporter genes using
licensed drugs (55–59). As alternatives to antibiotics, use of
bacteriophage and plant extracts has also been investigated,
which will be discussed in the next section.

By deleting or inactivating specific genes, researchers found
some putative new targets, for example reducing the virulence
of pathogens (60, 61). Quorum sensing (QS) or other bacterial
signaling systems have also been identified as new targets
for antibiotic molecules (62, 63). In-silico and in vitro high-
throughput screening of small-molecule and compound libraries
have also been increasingly used. Some agents have been
in Phase 1 of clinical trials (64). In 2015, Ling et al.
(65) discovered a “resistance-free” teixobactin in a screen of
uncultured soil bacteria sample. Experiments confirmed no
mutants of Staphylococcus aureus or Mycobacterium tuberculosis
resistant to this teixobactin. Hopefully, this study will start an
innovative approach to expanding the pool of natural antibiotics
(66). Recently, a new class of antibiotics—arylomycins—was
reported (67). The arylomycin G0775 showed activity against
multi-drug resistant Gram-negative clinical bacterial pathogens
by inhibiting the essential bacterial type I signal peptidase (which
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FIGURE 2 | Expected fate, transport, and exposure pathways for antibiotics and the spread of antibiotic resistome. Antibiotics from human and veterinary drugs,

growth promoter for animal husbandry and aquaculture, and improper release during pharmaceutical production are released into water and soil. Manure containing

antibiotic resistome may be carelessly used for crop production. Antibiotic resistome can remain in meat and the bacteria can be further spread to humans. People

take up antibiotics and resistome develops in their guts [modified from Song and guo (35) and Berendonk et al. (36)].

is a novel antibiotic target) through an unknown mechanism
as described by Smith et al. (67). Further investigation will
hopefully reveal the molecular mechanism underlying this novel
class of antibiotics originating from natural products. Efforts
will be made to identify and characterize more novel natural
products to tackle AMR and problems caused by over-application
of antibiotics in swine production.

Plant Extracts—a Promising Alternative
In addition to searching for new antibiotics,
alternatives/replacements have received growing attention
in the last decades (14, 68). Researchers have explored various
kinds of alternatives to animal antibiotics: feeding enzymes,
immunity modulating agents, bacteriophages and their lysines,
antimicrobial peptides, probiotics, prebiotics, synbiotics,
inhibitors targeting pathogenicity, plant extracts and others
(14, 69–75). In China, herbs and their extracts have been widely
used in traditional medicine for centuries before the introduction
of western medicine. Youyou Tu, from the China Academy of
Traditional Chinese Medicine in Beijing, was awarded the 2015
Nobel Prize in Physiology or Medicine for her discovery of
artemisinin (qinghaosu) extracted from Artemisia annua L.
(76). Her work was inspired by the Chinese traditional medical
book Prescriptions for Emergencies by Ge Hong (284–346 CE)
(77). Compared to other antibiotic alternatives, therefore, plant
extracts have received more attention and support in China.

Natural plant products and their derivatives have been
explored for their antimicrobial, anti-inflammatory, anti-
oxidative, and anti-parasite properties (78–84) (Table 1). A good
example is garlic extract, which is widely considered as one of the
most effective antibiotic agents (86). In addition, Areca catechu
is a rich source of compounds with anti- quorum sensing (QS)
properties (87). Some studies also found that P. aeruginosa genes
controlled by QS could be inhibited by the isothiocyanate iberin

from horseradish and ajoene from garlic (88, 89). When they
are combined with tobramycin, ajoene and horseradish juice
extracts function as a synergistic antibacterial (90). Extracts of
the genus Paeonia, one of the most important sources of drugs
in Chinese traditional medicine, can inhibit C. albicans growth
(91). Extracts from Fructus psoraleae, Folium eucalypti globuli
and Achillea millefolium, anti-dermatophitic compounds, have
been used to treat different ailments such as dermatomycosis in
Chinese traditional medicines (92, 93).

Diarrhea is a common cause of intestinal diseases in children
and animals including swine (94). Some studies have been
conducted to find plant extracts for inhibiting the proliferation of
E. coli. Khan et al. (95) found that pathogenic strains of E. coli are
sensitive to the extracts of three plants (Acacia nilotica, Syzygium
aromaticum and Cinnamum zeylanicum). Herb extracts from
Pulsatilla chinensis, Sophora flavescens, Phellodendron amurense,
Radix Astragali and Codonopsis pilosula (Franch) Nannf have
been used to treat diarrhea of piglets in Chongqing, Southwest
China (96). Because of the influence of harvesting method and
other unknown factors (97), plant extracts have been limited
by their variability (98). The current high cost also limits the
wide use of herb extracts, but the further development of herb
extracts may reduce the cost and expand their application in
developing countries.

Xinjiang is one of the Chinese regions with high biodiversity.
The flora include common bitter beans, Cynomorium, Ephedra,
Ferula, liquorice, snow lotus, sea buckthorn, and others. Among
these, bitter beans have antibacterial ingredients (99). Horse grass
contains alkaloids that, when drunk, can inhibit the function of
malignant tumors. Xinjiang Lithospermum and liquorice contain
glycyrrhizinate, flavonoids and other medicinal ingredients.
These plant ingredients have antibacterial effects on E. coli,
paratyphoid Salmonella, Staphylococcus aureus, Bacillus subtilis
and other common pathogens (100).
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TABLE 1 | Antibiotic alternatives: plant extracts.

Plant Effect observed References

Aged garlic extract,

allicin

Improved growth performance,

nutrient digestibility, intestinal

microbial balance, immune response

and meat quality in finishing pigs

(82)

Camellia sinensis Improved gut health of post-weaning

piglets and protection from E.coli
challenge

(81)

Cinnamon essential

oils, Cinnamaldehyde

Antimicrobial activity and improved

immune response against e.g.,

Salmonella typhimurium in swine

intestine

(83)

Carvacrol,

cinnamaldehye,

eugenol, etc.

Anti-inflammatory effects on porcine

alveolar macrophages

(78)

Capsicum oleoresin,

turmeric oleoresin,

garlicon

Improved gut health and reduced

frequency of diarrhea in weanling

pigs

(79, 80)

Agrimonia procera Growth performance, increased

immune response and antioxidative

effects in piglets

(84)

Chinese traditional

herbal medicine

(CTHM)

Beneficial effects on swine growth

with improved final live weight,

general digestibility and nitrogen

retention

(85)

Future Perspective and Conclusions
Global organizations and developed countries have paid
increasing attention to tackling the great risks of overuse and
abuse of antibiotics and antibiotic resistance (101). For example,
the World Health Assembly (WHA) commissioned the WHO to
deliver a global action plan on antibiotic resistance in May 2014.
The British government sponsored the £10 million Longitude
Prize for the best solution for the resistance problem in June
2014. The President’s Council of Advisors on Science and
Technology in the USA released a report on antibiotic resistance
in September 2014.

Slower than many European countries and the USA, China
unveiled a national plan to tackle antibiotic resistance in August
2016 (102). The plan highlights the importance of reducing
use of antibiotics in China’s livestock husbandry. However, the

implementation details of the plan are still unclear. Punishment
for violations is still lacking. As for many action plans and laws in
China, strict implementation is extremely important for reducing
the use of antibiotics (103, 104). The plan also emphasizes the
development of new antibiotics. As stated above, the high price
of new antibiotics and alternatives limits their development
(54). In the action plan, the funding source for discovery of
new antibiotics or alternatives, for example from government or
industry, is still unclear. Antibiotics have been widely overused
and abused in Chinese swine farms to prevent diseases. However,
it is more important to improve the sanitation and hygiene
conditions of swine farms. Rather than using antibiotics, some
measures should be applied to improve the health and well-
being of swine, in particular reducing animal overcrowding, and
controlling facility temperature and ventilation. In addition to
the swine farmers, joint efforts from government, academia and
veterinary professionals are indispensable.

Antibiotic resistance has become a world-wide challenge
and therefore international collaboration is increasingly crucial.
International collaboration between the world’s largest antibiotics
consumers, China and Europe, is indispensable to tackle the
AMR problem. The One Health approach is of importance to
achieve a sustainable and effective management of AMR by
joint efforts of the international community with involvement of
all stakeholders.
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