845 research outputs found

    A Rare Tract

    Get PDF

    Fuels and Burners for Domestic Heating

    Get PDF
    Discusses fuels and burners for domestic heating, including hand-fired coal or coke, automatic coal stoker, gas-fired heaters, oil burners. INlcudes table of comparative fuel costs

    Colias Hecla

    Get PDF

    Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events

    Get PDF
    Heinrich events—surges of icebergs into the North Atlantic Ocean—punctuated the last glacial period. The events are associated with millennial-scale cooling in the Northern Hemisphere. Fresh water from the melting icebergs is thought to have interrupted the Atlantic meridional overturning circulation, thus minimizing heat transport into the northern North Atlantic. The northward flow of warm water passes through the Florida Straits and is reflected in the distribution of seawater properties in this region. Here we investigate the northward flow through this region over the past 40,000 years using oxygen isotope measurements of benthic foraminifera from two cores on either side of the Florida Straits. These measurements allow us to estimate water density, which is related to flow through the thermal wind balance. We infer a substantial reduction of flow during Heinrich Event 1 and the Younger Dryas cooling, but little change during Heinrich Events 2 and 3, which occurred during an especially cold phase of the last glacial period. We speculate that because glacial circulation was already weakened before the onset of Heinrich Events 2 and 3, freshwater forcing had little additional effect. However, low-latitude climate perturbations were observed during all events. We therefore suggest that these perturbations may not have been directly caused by changes in heat transport associated with Atlantic overturning circulation as commonly assumed

    Evolution of South Atlantic density and chemical stratification across the last deglaciation.

    Get PDF
    Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ(18)O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ(13)C and foraminifer/coral (14)C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.We are grateful to I. Mather, J. Rolfe, F. Dewilde and G. Isguder for preparing and performing isotopic analyses, as well as C. Daunt, S. Souanef-Ureta and M. Greaves for technical assistance in performing trace element analysis. J.R. was funded jointly by the British Geological Survey/British Antarctic Survey (Natural Environment Research Council) and the University of Cambridge. J.G. was funded by the Gates Cambridge Trust. L.C.S. acknowledges support from the Royal Society and NERC grant NE/J010545/1. C.W. acknowledges support from the European Research Council grant ACCLIMATE/no 339108. This is LSCE contribution 5514. This work was funded (in part) by the European Research Council (ERC grant 2010-NEWLOG ADG-267931 HE). N.V.R. acknowledges support from EU RTN NICE (no. 36127). We thank the captain and crew of the RRS James Clark Ross for facilitating the collection of the marine sediment core GC528.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.151125211

    The Way to a Man's Heart Is through His Stomach: What about Horses?

    Get PDF
    International audienceBACKGROUND: How do we bond to one another? While in some species, like humans, physical contact plays a role in the process of attachment, it has been suggested that tactile contact's value may greatly differ according to the species considered. Nevertheless, grooming is often considered as a pleasurable experience for domestic animals, even though scientific data is lacking. On another hand, food seems to be involved in the creation of most relationships in a variety of species. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the horse training context to test the effects of food versus grooming during repeated human-horse interactions. The results reveal that food certainly holds a key role in the attachment process, while tactile contact was here clearly insufficient for bonding to occur. CONCLUSION/SIGNIFICANCE: This study raises important questions on the way tactile contact is perceived, and shows that large inter-species differences are to be expected
    • …
    corecore