16 research outputs found

    Adapting evidence-informed complex population health interventions for new contexts : a systematic review of guidance

    Get PDF
    Background Adapting interventions that have worked elsewhere can save resources associated with developing new interventions for each specific context. While a developing body of evidence shows benefits of adapted interventions compared with interventions transported without adaptation, there are also examples of interventions which have been extensively adapted, yet have not worked in the new context. Decisions on when, to what extent, and how to adapt interventions therefore are not straightforward, particularly when conceptualising intervention effects as contingent upon contextual interactions in complex systems. No guidance currently addresses these questions comprehensively. To inform development of an overarching guidance on adaptation of complex population health interventions, this systematic review synthesises the content of the existing guidance papers. Methods We searched for papers published between January 2000 and October 2018 in 7 bibliographic databases. We used citation tracking and contacted authors and experts to locate further papers. We double screened all the identified records. We extracted data into the following categories: descriptive information, key concepts and definitions, rationale for adaptation, aspects of adaptation, process of adaptation, evaluating and reporting adapted interventions. Data extraction was conducted independently by two reviewers, and retrieved data were synthesised thematically within pre-specified and emergent categories. Results We retrieved 6694 unique records. Thirty-eight papers were included in the review representing 35 sources of guidance. Most papers were developed in the USA in the context of implementing evidence-informed interventions among different population groups within the country, such as minority populations. We found much agreement on how the papers defined key concepts, aims, and procedures of adaptation, including involvement of key stakeholders, but also identified gaps in scope, conceptualisation, and operationalisation in several categories. Conclusions Our review found limitations that should be addressed in future guidance on adaptation. Specifically, future guidance needs to be reflective of adaptations in the context of transferring interventions across countries, including macro- (e.g. national-) level interventions, better theorise the role of intervention mechanisms and contextual interactions in the replicability of effects and accordingly conceptualise key concepts, such as fidelity to intervention functions, and finally, suggest evidence-informed strategies for adaptation re-evaluation and reporting

    Temporal trend of autonomic nerve function and HSP27, MIF and PAI-1 in type 1 diabetes

    No full text
    Aim: Diabetes mellitus type 1 (T1D) has numerous complications including autonomic neuropathy, i.e. dysfunction of the autonomous nervous system. This study focuses on Heat Shock Protein 27 (HSP27), Macrophage Migration Inhibitory Factor (MIF), Plasminogen Activator Inhibitor-1 (PAI-1) and HbA1c and their possible roles in effects of diabetes on the autonomic nervous system. Methods: Patients with T1D (n = 32, 41% women) were recruited in 1985 and followed up on four occasions (1989, 1993, 1998, and 2005). Autonomic function was tested using expiration/inspiration (E/I-ratio). Blood samples, i.e. HSP27 (last three occasions), MIF, PAI-1 (last two occasions) and HbA1c (five occasions), were analyzed. Results: Autonomic nerve function deteriorated over time during the 20-year-period, but levels of HSP27, MIF, and PAI-1 were not associated with cardiovascular autonomic neuropathy. MIF and PAI-1 were lower in T1D than in healthy controls in 2005. Increased HbA1c correlated with a decrease in E/I-ratio. Conclusions: Neither the neuroprotective substance HSP27 nor the inflammatory substances, MIF and PAI-1 were associated with measures of cardiovascular autonomic nerve function, but a deterioration of such function was observed in relation to increasing HbA1c in T1D during a 20-year follow-up period. Improved glucose control might be associated with protection against autonomic neuropathy in T1D
    corecore