32 research outputs found

    Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions

    Get PDF
    : The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested

    Update on genetic predisposition to colorectal cancer and polyposis

    Get PDF
    The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition

    BRCA1 Norway: comparison of classifcation for BRCA1 germline variants detected in families with suspected hereditary breast and ovarian cancer between different laboratories

    Get PDF
    Pathogenic germline variants in Breast cancer susceptibility gene 1 (BRCA1) predispose carriers to hereditary breast and ovarian cancer (HBOC). Through genetic testing of patients with suspected HBOC an increasing number of novel BRCA1 variants are discovered. This creates a growing need to determine the clinical significance of these variants through correct classification (class 1–5) according to established guidelines. Here we present a joint collection of all BRCA1 variants of class 2–5 detected in the four diagnostic genetic laboratories in Norway. The overall objective of the study was to generate an overview of all BRCA1 variants in Norway and unveil potential discrepancies in variant interpretation between the hospitals, serving as a quality control at the national level. For a subset of variants, we also assessed the change in classification over a ten-year period with increasing information available. In total, 463 unique BRCA1 variants were detected. Of the 126 variants found in more than one hospital, 70% were interpreted identically, while 30% were not. The differences in interpretation were mainly by one class (class 2/3 or 4/5), except for one larger discrepancy (class 3/5) which could affect the clinical management of patients. After a series of digital meetings between the participating laboratories to disclose the cause of disagreement for all conflicting variants, the discrepancy rate was reduced to 10%. This illustrates that variant interpretation needs to be updated regularly, and that data sharing and improved national inter-laboratory collaboration greatly improves the variant classification and hence increases the accuracy of cancer risk assessment.publishedVersio

    Current clinical criteria for Lynch syndrome are not sensitive enough to identify MSH6 mutation carriers

    Get PDF
    Background: Reported prevalence, penetrance and expression of deleterious mutations in the mismatch repair (MMR) genes, MLH1, MSH2, MSH6 and PMS2, may reflect differences in the clinical criteria used to select families for DNA testing. The authors have previously reported that clinical criteria are not sensitive enough to identify MMR mutation carriers among incident colorectal cancer cases. Objective: To describe the sensitivity of the criteria when applied to families with a demonstrated MMR mutation. Methods: Families with an aggregation of colorectal cancers were examined for deleterious MMR mutations according to the Mallorca guidelines. All families with a detected MMR mutation as of November 2009 were reclassified according to the Amsterdam and Bethesda criteria. Results: Sixty-nine different DNA variants were identified in a total of 129 families. The original Amsterdam clinical criteria were met by 38%, 12%, 78% and 25% of families with mutations in MSH2, MSH6, MLH1 and PMS2, respectively. Corresponding numbers for the revised Amsterdam criteria were 62%, 48%, 87% and 38%. Similarly, each of the four clinical Bethesda criteria had low sensitivity for identifying MSH6 or PMS2 mutations. Conclusion: Amsterdam criteria and each of the Bethesda criteria were inadequate for identifying MSH6 mutation-carrying kindreds. MSH6 mutations may be more common than currently assumed, and the penetrance/expression of MSH6 mutations, as derived from families meeting current clinical criteria, may be misleading. To increase detection rate of MMR mutation carriers, all cancers in the Lynch syndrome tumour spectrum should be subjected to immunohistochemical analysis and/or analysis for microsatellite instability

    Lynch syndrome mutation spectrum in New South Wales, Australia, including 55 novel mutations

    No full text
    Background Lynch syndrome, the most frequent hereditary colorectal cancer syndrome, is caused by defects in mismatch repair genes. Genetic testing is important in order to identify mutation carriers who can benefit from intensive surveil lance programs. One of the challenges with genetic testing is the interpretation of pathogenicity of detected DNA variants. The aim of this study was to investigate all putative pathogenic variants tested for at the Division of Molecular Medicine, Pathology North, in Newcastle, Australia, to establish whether previous variant classification is in accordance with that recently performed in the InSiGHT collaboration. Methods Prediction programs and available literature were used to classify new variants or variants without classification. Results We identified 333 mutation positive families, in which 211 different putative pathogenic mismatch repair mutations were found. Most variants with an InSiGHT classification (141 out of 146) were in accordance with our classification. Five variants were discordant, of which one can definitively be reclassified according to the InSiGHT scheme as class 5. Sixty-four variants had not been classified by InSiGHT, of whom 55 have not been previously reported. Conclusion In conclusion, we found that our classifications were mostly in accordance with the InSiGHT scheme. In addition to already known MMR mutations, we have also presented 55 novel pathogenic or putative pathogenic mutation

    Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location

    No full text
    Abstract Background MicroRNAs (miRNA) and other small RNAs are frequently dysregulated in cancer and are promising biomarkers for colon cancer. Here we profile human, virus and bacteria small RNAs in normal and tumor tissue from early stage colon cancer and correlate the expression with clinical parameters. Methods Small RNAs from colon cancer tissue and adjacent normal mucosa of 48 patients were sequenced using Illumina high-throughput sequencing. Clinical parameters were correlated with the small RNA expression data using linear models. We performed a meta-analysis by comparing publicly available small RNA sequencing datasets with our original sequencing data to confirm the main findings. Results We identified 331 differentially expressed miRNAs between tumor and normal samples. We found that the major changes in miRNA expression between left and right colon are due to miRNAs located within the Hox-developmental genes, including miR-10b, miR-196b and miR-615. Further, we identified new miRNAs associated with microsatellite instability (MSI), including miR-335, miR-26 and miR-625. We performed a meta-analysis on all publicly available miRNA-seq datasets and identified 117 common miRNAs that were differentially expressed between tumor and normal tissue. The miRNAs miR-135b and miR-31 were the most significant upregulated miRNA in tumor across all datasets. The miRNA miR-133a was the most strongly downregulated miRNA in our dataset and also showed consistent downregulation in the other datasets. The miRNAs associated with MSI and tumor location in our data showed similar changes in the other datasets. Finally, we show that small RNAs from Epstein-Barr virus and Fusobacterium nucleatum are differentially expressed between tumor and normal adjacent tissue. Conclusions Small RNA profiling in colon cancer tissue revealed novel RNAs associated with MSI and tumor location. We show that Fusobacterium nucleatum are detectable at the RNA-level in colon tissue, and that both Fusobacterium nucleatum and Epstein-Barr virus separate tumor and normal tissue

    sMETASeq: combined profiling of microbiota and host small RNAs

    No full text
    Understanding microbial communities' roles in human health and disease requires methods that accurately characterize the microbial composition and their activity and effects within human biological samples. We present sMETASeq (small RNA Metagenomics by Sequencing), a novel method that uses sequencing of small RNAs to jointly measure host small RNA expression and create metagenomic profiles and detect small bacterial RNAs. We evaluated the performance of sMETASeq on a mock bacterial community and demonstrated its use on different human samples, including colon cancer, oral leukoplakia, cervix cancer, and a panel of human biofluids. In all datasets, the detected microbes reflected the biology of the different sample types

    Identification of metastasis-associated microRNAs in serum from rectal cancer patients

    No full text
    MicroRNAs (miRNAs) are promising prognostic and diagnostic biomarkers due to their high stability in blood. Here we investigate the expression of miRNAs and other noncoding (nc) RNAs in serum of rectal cancer patients. Serum from 96 rectal cancer patients was profiled using small RNA sequencing and expression of small RNAs was correlated with the clinicopathological characteristics of the patients. Multiple classes of RNAs were detected, including miRNAs and fragments of tRNAs, snoRNAs, long ncRNAs, and other classes of RNAs. Several miRNAs, miRNA variants (isomiRs) and other ncRNAs were differentially expressed between Stage IV and Stage I-III rectal cancer patients, including several members of the miR-320 family. Furthermore, we show that high expression of miR-320d as well as one tRNA fragment is associated with poor survival. We also show that several miRNAs and isomiRs are differentially expressed between patients receiving preoperative chemoradiotherapy and patients who did not receive any treatment before serum collection. In summary, our study shows that the expression of miRNAs and other small ncRNAs in serum may be used to predict distant metastasis and survival in rectal cancer

    The Prognostic Value of Methylation Signatures and NF2 Mutations in Atypical Meningiomas

    No full text
    Background: Due to the solely subjective histopathological assessment, the WHO 2016 classification of human meningiomas is subject to interobserver variation. Consequently, the need for more reliable and objective markers are highly needed. The aim of this pilot study was to apply genome-wide DNA methylation analysis on a series of atypical meningiomas to evaluate the practical utility of this approach, examine whether prognostic subclasses are achieved and investigate whether there is an association between the methylation subclasses with poor prognosis and time to recurrence. NF1/2 mutation analyses were also performed to explore the prognostic value of such mutations in these atypical meningiomas. Methods: Twenty intracranial WHO grade II atypical meningiomas from adult patients were included. They consisted of 10 cases with recurrence (group I), and 10 cases without recurrence (group II). The formalin-fixed and paraffin-embedded tissues underwent standardized genome-wide DNA methylation analysis, and the profiles were matched with the reference library and tumor classifier from Heidelberg. NF1/2 somatic mutation analyses were performed using the CNSv1panel from Düsseldorf. Results: Eighteen out of 20 cases matched to the meningioma class using the common brain tumor classifier (v11b4). Four of these cases matched to a methylation subclass related to a prognostic subgroup based on a cut-off of 0.9. NF2 mutations were detected in 55% of cases across both groups, and the most prominent copy number alterations were chromosomal losses of 22q, 1p and 14q. No significant NF1 mutations were identified. Conclusions: Genome-wide DNA methylation profiling represents a useful tool in the diagnostics of meningiomas, however, methodological adjustments need to be addressed
    corecore