37 research outputs found

    On the physical limitations for radio frequency absorption in gold nanoparticle suspensions

    Get PDF
    This paper presents a study of the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions. A spherical geometry is considered consisting of a spherical suspension of colloidal GNPs characterized as an arbitrary passive dielectric material which is immersed in an arbitrary lossy medium. A relative heating coefficient and a corresponding optimal near field excitation are defined taking the skin effect of the surrounding medium into account. The classical Mie theory for lossy media is also revisited, and it is shown that the optimal permittivity function yielding a maximal absorption inside the spherical suspension is a conjugate match with respect to the surrounding lossy material. A convex optimization approach is used to investigate the broadband realizability of an arbitrary passive material to approximate the desired conjugate match over a finite bandwidth, similar to the approximation of a metamaterial. A narrowband realizability study shows that for a surrounding medium consisting of a weak electrolyte solution, the electromagnetic heating due to the electrophoretic (plasmonic) resonance phenomena inside the spherical GNP suspension can be significant in the microwave regime, provided that the related Drude parameters can be tuned into (or near to) resonance. As a demonstration, some realistic Drude parameters are investigated concerning the volume fraction, mass, and friction constant of the GNPs. The amount of charge that can be accommodated by the GNPs is identified as one of the most important design parameters. However, the problem to reliably model, measure and control the charge number of coated GNPs is not yet fully understood, and is still an open research issue in this field. The presented theory and related physical limitations provide a useful framework for further research in this direction. Future research is also aiming at an expansion towards arbitrary suspension geometries and the inclusion of thermodynamical analysis

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 μmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation

    No full text
    Background Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. Methods Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. Results In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation

    An experimental evaluation of bow-tie analysis for cybersecurity requirements

    Get PDF
    Postprint version of published article. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-030-12786-2_11Bow-tie analysis includes a graphical representation for depicting threats and consequences related to unwanted events, and shows how preventive and reactive barriers can provide control over such situations. This kind of analysis has traditionally been used to elicit requirements for safety and reliability engineering, but as a consequence of the ever-increasing coupling between the cyber and physical world, security has become an additional concern. Through a controlled experiment, we provide evidence that the expressiveness of the bow-tie notation is suitable for this purpose as well. Our results show that a sample population of graduate students, inexperienced in security modelling, perform similarly as security experts when we have a well-defined scope and familiar target system/situation. We also demonstrate that misuse case diagrams should be regarded as more of a complementary than competing modelling technique.acceptedVersio

    The lithosphere–asthenosphere boundary in the North-West Atlantic region

    Get PDF
    A detailed knowledge of the thickness of the lithosphere in the north Atlantic is an important parameter for understanding plate tectonics in that region. We achieve this goal with as yet unprecedented detail using the seismic technique of S-receiver functions. Clear positive signals from the crust–mantle boundary and negative signals from a mantle discontinuity beneath Greenland, Iceland and Jan Mayen are observed. According to seismological practice, we call the negative phase the lithosphere–asthenosphere boundary (LAB). The seismic lithosphere under most of the Iceland and large parts of central Greenland is about 80 km thick. This depth in Iceland is in disagreement with estimates of the thickness of the elastic lithosphere (10–20 km) found from postglacial rebound data. In the region of flood basalts in eastern Greenland, which overlies the proposed Iceland plume track, the lithosphere is only 70 km thick, about 10 km less than in Iceland which is located directly above the proposed plume. At the western Greenland coast, the lithosphere thickens to 100–120 km, with no indication of the Iceland plume track identified. Below Jan Mayen the lithospheric thickness varies between 40 and 60 km
    corecore