29 research outputs found

    Towards a deeper understanding of the human brain

    No full text
    Identifying the proteome variation in different parts of the body provides fundamental molecular details, enabling further findings and mapping of tissue specific proteins. By combining quantitative transcriptomics with qualitative antibody based proteomics, the Human Protein Atlas (HPA) project aims to protein profile each human protein-coding gene. Genes with varying expression levels in the different tissue types are categorized as tissue elevated in one tissue compared to others, thus connecting genes to potential tissue specific functions. This thesis focuses on the most complex organ in the human body, the brain. With its billions of neurons specifically organized and interconnected, the ability of not only controlling the body but also responsible for higher cognitive functions, the brain is still not fully understood. In my search for brain important proteins, genes were classified at different stages based on expression levels. In Paper I and II the transcriptome of cerebral cortex was compared with peripheral organs to classify genes with elevated expression in the brain. Brain expression information was expanded by including external data (GTEx and FANTOM5) into the analysis, in Paper III. Thereafter, in Paper IV, the three datasets (HPA, GTEx and FANTOM5) were aligned and combined, enabling a consensus classification with an improved representation of the brain complexity. The most recent classification provided whole body gene expression profiles and out of the 19,670 protein-coding genes, 2,501 were expressed at elevated levels in the brain compared to the other tissue types. Twelve individual regions represented the brain as an organ, and were further analyzed and compared for regional classification of gene expression. One thousand genes showed regional variation in expression level, thus classified as regionally elevated within the brain. Interestingly, less than 500 of the genes classified as brain elevated on the whole body level, and were also regionally elevated in the brain. Many genes with regionally variable expression within the brain showed higher expression in a peripheral organ than in the brain when comparing whole body expression. Based on elevated expression in the brain or brain regions, more than 3,000 genes were suggested to be of high importance to the brain. In addition, this high-throughput approach to combine transcriptomics and protein profiles in tissues and cells further generated new knowledge in several different other aspects: better understanding of uncharacterized and “missing proteins” (Paper III), validation of an antibody improving classification of pituitary adenoma (Paper V) and in Paper VI the possibility to explore cancer specific expression in relation to clinical data and normal tissue expression. There are multiple diseases of the brain that are poorly understood on both a cellular and molecular level. While my work mainly focused on identifying and understanding the molecular organization of the normal brain, the ultimate goal of mapping and studying the normal expression baseline is to understand the molecular aspects of disease and identify ways to prevent, treat and cure diseases.QC 20181018</p

    Towards a deeper understanding of the human brain

    No full text
    Identifying the proteome variation in different parts of the body provides fundamental molecular details, enabling further findings and mapping of tissue specific proteins. By combining quantitative transcriptomics with qualitative antibody based proteomics, the Human Protein Atlas (HPA) project aims to protein profile each human protein-coding gene. Genes with varying expression levels in the different tissue types are categorized as tissue elevated in one tissue compared to others, thus connecting genes to potential tissue specific functions. This thesis focuses on the most complex organ in the human body, the brain. With its billions of neurons specifically organized and interconnected, the ability of not only controlling the body but also responsible for higher cognitive functions, the brain is still not fully understood. In my search for brain important proteins, genes were classified at different stages based on expression levels. In Paper I and II the transcriptome of cerebral cortex was compared with peripheral organs to classify genes with elevated expression in the brain. Brain expression information was expanded by including external data (GTEx and FANTOM5) into the analysis, in Paper III. Thereafter, in Paper IV, the three datasets (HPA, GTEx and FANTOM5) were aligned and combined, enabling a consensus classification with an improved representation of the brain complexity. The most recent classification provided whole body gene expression profiles and out of the 19,670 protein-coding genes, 2,501 were expressed at elevated levels in the brain compared to the other tissue types. Twelve individual regions represented the brain as an organ, and were further analyzed and compared for regional classification of gene expression. One thousand genes showed regional variation in expression level, thus classified as regionally elevated within the brain. Interestingly, less than 500 of the genes classified as brain elevated on the whole body level, and were also regionally elevated in the brain. Many genes with regionally variable expression within the brain showed higher expression in a peripheral organ than in the brain when comparing whole body expression. Based on elevated expression in the brain or brain regions, more than 3,000 genes were suggested to be of high importance to the brain. In addition, this high-throughput approach to combine transcriptomics and protein profiles in tissues and cells further generated new knowledge in several different other aspects: better understanding of uncharacterized and “missing proteins” (Paper III), validation of an antibody improving classification of pituitary adenoma (Paper V) and in Paper VI the possibility to explore cancer specific expression in relation to clinical data and normal tissue expression. There are multiple diseases of the brain that are poorly understood on both a cellular and molecular level. While my work mainly focused on identifying and understanding the molecular organization of the normal brain, the ultimate goal of mapping and studying the normal expression baseline is to understand the molecular aspects of disease and identify ways to prevent, treat and cure diseases.QC 20181018</p

    Towards a deeper understanding of the human brain

    No full text
    Identifying the proteome variation in different parts of the body provides fundamental molecular details, enabling further findings and mapping of tissue specific proteins. By combining quantitative transcriptomics with qualitative antibody based proteomics, the Human Protein Atlas (HPA) project aims to protein profile each human protein-coding gene. Genes with varying expression levels in the different tissue types are categorized as tissue elevated in one tissue compared to others, thus connecting genes to potential tissue specific functions. This thesis focuses on the most complex organ in the human body, the brain. With its billions of neurons specifically organized and interconnected, the ability of not only controlling the body but also responsible for higher cognitive functions, the brain is still not fully understood. In my search for brain important proteins, genes were classified at different stages based on expression levels. In Paper I and II the transcriptome of cerebral cortex was compared with peripheral organs to classify genes with elevated expression in the brain. Brain expression information was expanded by including external data (GTEx and FANTOM5) into the analysis, in Paper III. Thereafter, in Paper IV, the three datasets (HPA, GTEx and FANTOM5) were aligned and combined, enabling a consensus classification with an improved representation of the brain complexity. The most recent classification provided whole body gene expression profiles and out of the 19,670 protein-coding genes, 2,501 were expressed at elevated levels in the brain compared to the other tissue types. Twelve individual regions represented the brain as an organ, and were further analyzed and compared for regional classification of gene expression. One thousand genes showed regional variation in expression level, thus classified as regionally elevated within the brain. Interestingly, less than 500 of the genes classified as brain elevated on the whole body level, and were also regionally elevated in the brain. Many genes with regionally variable expression within the brain showed higher expression in a peripheral organ than in the brain when comparing whole body expression. Based on elevated expression in the brain or brain regions, more than 3,000 genes were suggested to be of high importance to the brain. In addition, this high-throughput approach to combine transcriptomics and protein profiles in tissues and cells further generated new knowledge in several different other aspects: better understanding of uncharacterized and “missing proteins” (Paper III), validation of an antibody improving classification of pituitary adenoma (Paper V) and in Paper VI the possibility to explore cancer specific expression in relation to clinical data and normal tissue expression. There are multiple diseases of the brain that are poorly understood on both a cellular and molecular level. While my work mainly focused on identifying and understanding the molecular organization of the normal brain, the ultimate goal of mapping and studying the normal expression baseline is to understand the molecular aspects of disease and identify ways to prevent, treat and cure diseases.QC 20181018</p

    Cardiovascular consequences of parathyroid disorders in adults

    No full text
    PTH is a metabolic active hormone primarily regulating calcium and phosphate homeostasis in a very tight and short term-manner. Parathyroid disorders in adult patients reflect a variety of different conditions related either to the parathyroid glands itself or to the effects of the secreted hormone. The clinical spectrum varies from the common disease primary hyperparathyroidism (PHPT) to the orphan conditions pseudohypoparathyroidism (Ps-HypoPT) and chronic hypoparathyroidism (HypoPT). The purpose of this review is to describe the consequences of disturbances in levels or action of PTH for cardiac function and cardiovascular risk in adult patients with these disorders. Most patients with PHPT achieve the diagnose by chance and have minor or no specific symptoms. Still, these patients with mild PHPT do possess cardiovascular (CV) morbidity, however so far not proven ameliorated by surgery in controlled trials. In severe cases, the CV risk is increased and with a potential reversibility by treatment. Patients with Ps-HypoPT have resistance to PTH action, but not necessarily total resistance in all tissues. So far, no clear CV morbidity or risk has been demonstrated, but there are several aspects of interest for further studies. Most patients with HypoPT do get their hormonal deficiency syndrome following neck surgery. These patients do experience multiple symptoms and do have an increased CV-risk before the primary surgery. Based on existing data, their CV mortality do not deviate from the expected when adjusting for the preexisting increased risk. Patients with nonsurgical (NS-) HypoPT do demonstrate increased CV-risk also associated with exposure time. Endocrine disorders with alterations in PTH function have major impact on the cardiovascular system of importance for morbidity and mortality, wherefore management of these specific diseases should be optimized currently, as new data become available, however also avoiding over-treating asymptomatic patients

    Between activity and solidarity : Comprehending retirement and extendedworking lives in Swedish rural areas

    No full text
    The expected costs of population ageing have generally led to perceived needs to postpone the age of retirement. Drawing on 20 semi-structured interviews, the aim of this paper is to describe the ways that the possibility of an extended working life is comprehended by persons over the age of 60 living in sparsely populated areas in northern Sweden. While defining themselves as active, the interviewees argued strongly in favour of the right to retire. What are often described as opposing retiree subject positions – healthy and active vs. vulnerable and dependent – were partly transgressed in the interviews. The interviewees performed a solidarity that had the potential of including their future selves as possible objects of solidarity. Another important result was that in comprehending the possibility of an extended working life, morally charged notions of geographic place became central

    Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas

    No full text
    The tissue microarray (TMA) technology provides the means for high-throughput analysis of multiple tissues and cells. The technique is used within the Human Protein Atlas project for global analysis of protein expression patterns in normal human tissues, cancer and cell lines. Here we present the assembly of 1 mm cores, retrieved from microscopically selected representative tissues, into a single recipient TMA block. The number and size of cores in a TMA block can be varied from approximately forty 2 mm cores to hundreds of 0.6 mm cores. The advantage of using TMA technology is that large amount of data can rapidly be obtained using a single immunostaining protocol to avoid experimental variability. Importantly, only limited amount of scarce tissue is needed, which allows for the analysis of large patient cohorts (1 2). Approximately 250 consecutive sections (4 μm thick) can be cut from a TMA block and used for immunohistochemical staining to determine specific protein expression patterns for 250 different antibodies. In the Human Protein Atlas project, antibodies are generated towards all human proteins and used to acquire corresponding protein profiles in both normal human tissues from 144 individuals and cancer tissues from 216 different patients, representing the 20 most common forms of human cancer. Immunohistochemically stained TMA sections on glass slides are scanned to create high-resolution images from which pathologists can interpret and annotate the outcome of immunohistochemistry. Images together with corresponding pathology-based annotation data are made publically available for the research community through the Human Protein Atlas portal (www.proteinatlas.org) (Figure 1) (3 4). The Human Protein Atlas provides a map showing the distribution and relative abundance of proteins in the human body. The current version contains over 11 million images with protein expression data for 12.238 unique proteins, corresponding to more than 61% of all proteins encoded by the human genome

    Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex

    No full text
    The mammalian brain is a complex organ composed of many specialized cells, harboring sets of both common, widely distributed, as well as specialized and discretely localized proteins. Here we focus on the human brain, utilizing transcriptomics and public available Human Protein Atlas (HPA) data to analyze brain-enriched (frontal cortex) polyadenylated messenger RNA and long non-coding RNA and generate a genome-wide draft of global and cellular expression patterns of the brain. Based on transcriptomics analysis of altogether 27 tissues, we have estimated that approximately 3% (n=571) of all protein coding genes and 13% (n=87) of the long non-coding genes expressed in the human brain are enriched, having at least five times higher expression levels in brain as compared to any of the other analyzed peripheral tissues. Based on gene ontology analysis and detailed annotation using antibody-based tissue micro array analysis of the corresponding proteins, we found the majority of brain-enriched protein coding genes to be expressed in astrocytes, oligodendrocytes or in neurons with molecular properties linked to synaptic transmission and brain development. Detailed analysis of the transcripts and the genetic landscape of brainenriched coding and non-coding genes revealed brain-enriched splice variants. Several clusters of neighboring brain-enriched genes were also identified, suggesting regulation of gene expression on the chromatin level. This multi-angle approach uncovered the brainenriched transcriptome and linked genes to cell types and functions, providing novel insights into the molecular foundation of this highly specialized organ
    corecore