2,182 research outputs found

    Assessing Short‐Term Impacts of Management Practices on N2O Emissions From Diverse Mediterranean Agricultural Ecosystems Using a Biogeochemical Model

    Get PDF
    Croplands are important sources of nitrous oxide (N2O) emissions. The lack of both long‐term field measurements and reliable methods for extrapolating these measurements has resulted in a large uncertainty in quantifying and mitigating N2O emissions from croplands. This is especially relevant in regions where cropping systems and farming management practices (FMPs) are diverse. In this study, a process‐based biogeochemical model, DeNitrification‐DeComposition (DNDC), was tested against N2O measurements from five cropping systems (alfalfa, wheat, lettuce, vineyards, and almond orchards) representing diverse environmental conditions and FMPs. The model tests indicated that DNDC was capable of predicting seasonal and annual total N2O emissions from these cropping systems, and the model\u27s performance was better than the Intergovernmental Panel on Climate Change emission factor approach. DNDC also captured the impacts on N2O emissions of nitrogen fertilization for wheat and lettuce, of stand age for alfalfa, as well as the spatial variability of N2O fluxes in vineyards and orchards. DNDC overestimated N2O fluxes following some heavy rainfall events. To reduce the biases of simulating N2O fluxes following heavy rainfall, studies should focus on clarifying mechanisms controlling impacts of environmental factors on denitrification. DNDC was then applied to assess the impacts on N2O emissions of FMPs, including tillage, fertilization, irrigation, and management of cover crops. The practices that can mitigate N2O emissions include reduced or no tillage, reduced N application rates, low‐volume irrigation, and cultivation of nonleguminous cover crops. This study demonstrates the necessity and potential of utilizing process‐based models to quantify N2O emissions from regions with highly diverse cropping systems

    NMR Imaging of low pressure, gas-phase transport in packed beds using hyperpolarized xenon-129

    Get PDF
    Gas-phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study of transient diffusion for micro- scopic porous systems using xenon chemical shift to selectively image gas within the pores, and, thence, permits study of low-density, gas-phase mass-transport, such that diffusion can be studied in the Knudsen regime, and not just the molecular regime, which is the limitation with other current techniques. Knudsen-regime diffusion is common in many industrial, catalytic processes. Significantly, larger spatial variability in mass transport rates across the packed bed was found compared to techniques using only molecular diffusion. It has thus been found that that these heterogeneities arise over length-scales much larger tha

    The interdisciplinary nature of SOIL

    Get PDF
    The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, geologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as current research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils. Of fundamental importance amongst these issues are biodiversity, biofuels/energy security, climate change, ecosystem services, food security, human health, land degradation, and water security, each representing a critical challenge for research. In order to establish a benchmark for the type of research that we seek to publish in each issue of SOIL, we have outlined the interdisciplinary nature of soil science research we are looking for. This includes a focus on the myriad ways soil science can be used to expand investigation into a more holistic and therefore richer approach to soil research. In addition, a selection of invited review papers are published in this first issue of SOIL that address the study of soils and the ways in which soil investigations are essential to other related fields. We hope that both this editorial and the papers in the first issue will serve as examples of the kinds of topics we would like to see published in SOIL and will stimulate excitement among our readers and authors to participate in this new venture

    Pathway to cryogen free production of hyperpolarized krypton-83 and xenon-129

    Get PDF
    yperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.561.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.460.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process

    Pulmonary MRI contrast using Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized 83Kr

    Get PDF
    Hyperpolarized 83Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the 83Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched 83Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized 83Kr MRI after krypton inhalation. Different 83Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized 83Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast

    Sources of nitrogen for winter wheat in organic cropping systems

    Get PDF
    In organic cropping systems, legumes, cover crops, residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum aestivum L.) in four experimental cropping systems established in 1997 on three soil types. Three of the four systems were under organic management. Topsoil N, depth of the A horizon, and cumulated inputs of N since 1997 were determined at plot level. Labile soil N pools (mineral N, potentially mineralizable N [PMN], microbial biomass N [MBN]) were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. PMN and MBN were correlated across all sites and rotations (r2=0.72). The MBN corresponded to 46-85, 85-145 and 74-172 kg N ha-1 at the three sites and differed significantly between cropping systems, but MBN could not explain differences in wheat grain N yields. Instead, a multiple linear regression model explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties, and past and current management all contributed to winter wheat N supply

    Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm1^{-1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/cc with a tensor polarized 2^2H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.Comment: 4 pages, 3 figure

    Object-Based Image Classification of Summer Crop with Machine Learning Methods

    Get PDF
    The strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning methods. In this investigation, we evaluated the C4.5 decision tree, logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) neural network methods, both as single classifiers and combined in a hierarchical classification, for the mapping of nine major summer crops (both woody and herbaceous) from ASTER satellite images captured in two different dates. Each method was built with different combinations of spectral and textural features obtained after the segmentation of the remote images in an object-based framework. As single classifiers, MLP and SVM obtained maximum overall accuracy of 88%, slightly higher than LR (86%) and notably higher than C4.5 (79%). The SVM+SVM classifier (best method) improved these results to 89%. In most cases, the hierarchical classifiers considerably increased the accuracy of the most poorly classified class (minimum sensitivity). The SVM+SVM method offered a significant improvement in classification accuracy for all of the studied crops compared to the conventional decision tree classifier, ranging between 4% for safflower and 29% for corn, which suggests the application of object-based image analysis and advanced machine learning methods in complex crop classification tasks.This research was partly financed by the TIN2011-22794 project of the Spanish Ministerial Commission of Science and Technology (MICYT), FEDER funds, the P2011-TIC-7508 project of the “Junta de Andalucía” (Spain) and the Kearney Foundation of Soil Science (USA). The research of Peña was co-financed by the Fulbright-MEC postdoctoral program, financed by the Spanish Ministry for Science and Innovation, and by the JAEDoc Program, supported by CSIC and FEDER funds. ASTER data were available to us through a NASA EOS scientific investigator affiliation.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer Reviewe

    Investigation of the conjectured nucleon deformation at low momentum transfer

    Full text link
    We report new precise H(e,ep)π0(e,e^\prime p)\pi^0 measurements at the Δ(1232)\Delta(1232) resonance at Q2=0.127Q^2= 0.127 (GeV/c)2^2 using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude (E2E2) of the γNΔ\gamma^* N\to\Delta transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios EMR=(2.3±0.3stat+sys±0.6model)EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})% and CMR=(6.1±0.2stat+sys±0.5model)CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})% and for M1+3/2=(41.4±0.3stat+sys±0.4model)(103/mπ+)M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+}). They give credence to the conjecture of deformation in hadronic systems favoring, at low Q2Q^2, the dominance of mesonic effects.Comment: 4 pages, 1figur
    corecore