11 research outputs found

    Limitations to Realize Quantum Zeno Effect in Beam Splitter Array -- a Monte Carlo Wavefunction Analysis

    Full text link
    Effects of non-ideal optical components in realizing quantum Zeno effect in an all-optical setup are analyzed. Beam splitters are the important components in this experimental configuration. Nonuniform transmission coefficient, photon absorption and thermal noise are considered. Numerical simulation of the experiment is performed using the Monte Carlo wavefunction method. It is argued that there is an optimal number of beam splitters to be used for maximizing the expected output in the experiment.Comment: To be published in the Journal of the Physical Society of Japa

    Nonlinear Langevin dynamics via holography

    Full text link
    In this work, we consider non-linear corrections to the Langevin effective theory of a heavy quark moving through a strongly coupled CFT plasma. In AdS/CFT, this system can be identified with that of a string stretched between the boundary and the horizon of an asymptotically AdS black-brane solution. We compute the Feynman-Vernon influence phase for the heavy quark by evaluating the Nambu-Goto action on a doubled string configuration. This configuration is the linearised solution of the string motion in the doubled black-brane geometry which has been proposed as the holographic dual of a thermal Schwinger-Keldysh contour of the CFT. Our expression for the influence phase passes non-trivial consistency conditions arising from the underlying unitarity and thermality of the bath. The local effective theory obeys the recently proposed non-linear fluctuation dissipation theorem relating the non-Gaussianity of thermal noise to the thermal jitter in the damping constant. This furnishes a non-trivial check for the validity of these relations derived in the weak coupling regime.Comment: 31 pages + appendices. Minor revision added on integrating out ghost fields in the path integra

    Effective field theory of stochastic diffusion from gravity

    Full text link
    Planar black holes in AdS have long-lived quasinormal modes which capture the physics of charge and momentum diffusion in the dual field theory. How should we characterize the effective dynamics of a probe system coupled to the conserved currents of the dual field theory? Specifically, how would such a probe record the long-lived memory of the black hole and its Hawking fluctuations? We address this question by exhibiting a universal gauge invariant framework which captures the physics of stochastic diffusion in holography: a designer scalar with a gravitational coupling governed by a single parameter, the Markovianity index. We argue that the physics of gauge and gravitational perturbations of a planar Schwarzschild-AdS black hole can be efficiently captured by such designer scalars. We demonstrate that this framework allows one to decouple, at the quadratic order, the long-lived quasinormal and Hawking modes from the short-lived ones. It furthermore provides a template for analyzing fluctuating open quantum field theories with memory. In particular, we use this set-up to analyze the diffusive Hawking photons and gravitons about a planar Schwarzschild-AdS black hole and derive the quadratic effective action that governs fluctuating hydrodynamics of the dual CFT. Along the way we also derive results relevant for probes of hyperscaling violating backgrounds at finite temperature.Comment: 57 pages + appendices. v2: typos fixed. v3: minor changes, published versio

    Holography of information in massive gravity using Dirac brackets

    No full text
    Abstract The principle of holography of information states that in massless gravity, it is possible to extract bulk information using asymptotic boundary operators. In our work, we study this principle in a linearized setting about empty flat space and formulate it using Dirac brackets between boundary Hamiltonian and bulk operators. We then address whether the storage of bulk information in flat space linearized massive gravity resembles that of massless gravity. For linearized massless gravity, using Dirac brackets, we recover the necessary criteria for the holography of information. In contrast, we show that the Dirac bracket of the relevant boundary observable with bulk operators vanishes for massive gravity. We use this important distinction to outline the canonical Hilbert space. This leads to split states, and consequently, one cannot use asymptotic boundary observables to extract bulk information in massive gravity. We also argue the split property directly without an explicit reference to the Hilbert space. The result reflects that we can construct local bulk operators in massive gravity about the vacuum, which are obscured from boundary observables due to the lack of diffeomorphism invariance. Our analysis sheds some light on evaporating black holes in the context of the islands proposal

    The timbre of Hawking gravitons: an effective description of energy transport from holography

    Full text link
    Planar black holes in AdS, which are holographically dual to compressible relativistic fluids, have a long-lived phonon mode that captures the physics of attenuated sound propagation and transports energy in the plasma. We describe the open effective field theory of this fluctuating phonon degree of freedom. The dynamics of the phonon is encoded in a single scalar field whose gravitational coupling has non-trivial spatial momentum dependence. This description fits neatly into the paradigm of classifying gravitational modes by their Markovianity index, depending on whether they are long-lived. The sound scalar is a non-Markovian field with index (3-d) for a d-dimensional fluid. We reproduce (and extend) the dispersion relation of the holographic sound mode to quartic order in derivatives, constructing in the process the effective field theory governing its attenuated dynamics and associated stochastic fluctuations. We also remark on the presence of additional spatially homogeneous zero modes in the gravitational problem, which remain disconnected from the phonon Goldstone mode.Comment: 29 pages + appendices. v2: minor improvements and fixed typo
    corecore