187 research outputs found

    An Empirical Assessment of Customer Lifetime Value Models within Data Mining

    Get PDF
    Customer lifetime value has been of significant importance to marketing researchers and practitioners in specifying the importance level of each customer. By means of segmentation which could be carried out using value-based characteristics it is indeed possible to develop tailored strategies for customers. In fact, approaches like data mining can facilitate extraction of critical customer knowledge for enhanced decision making. Although the literature has several analytical lifetime value models, comparative assessment of the existing models especially within the context of data mining seems a missing component. The aim of this paper is to compare two different customer lifetime value models within data mining. The evaluation was carried out within the context of customer segmentation using a database of a company operating in retail sector. The results indicated that two models yield the same segmentation structure and no statistical differences detected on the select control variables. However, the remaining model produced rather different segmentation results than their peers and it was possible to identify the most lucrative model according to the statistical analyses that were carried out on the select control variables

    The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure-function relationships

    Get PDF
    Background: Insulin receptor substrate 1 (IRS-1) is a signaling molecule that exerts a key role in mediating cross talk between estrogen receptor a (ERa) and insulin-like growth factor 1 (IGF-1) in breast cancer cells. Previously, we demonstrated that a fraction of IRS-1 binds ERa, translocates to the nucleus, and modulates ERa-dependent transcription at estrogen response elements (ERE). Here, we studied structure–function relationships of the ERa:IRS-1 complex under IGF-1 and/or estradiol (E2) stimulation. Materials and methods: ERa and IRS-1 deletion mutants were used to analyze structural and functional ERa/IRS-1 interactions. IRS-1 binding to ERE and IRS-1 role in ERa-dependent ERE transcription was examined by chromatin immunoprecipitation and gene reporter analysis, respectively. The requirement for IRS-1 in ERa function was tested with RNAi technology. Results: Nuclear translocation of IRS-1 was induced by E2, IGF-1, and a combination of both stimuli. ERa/IRS-1 binding was direct and involved the activation function-1 (AF-1)/DNA binding domain (DBD) region of ERa and two discrete regions of IRS-1 (the N-terminal pleckstrin homology domain and a region within the C-terminus). IRS-1 knock down abrogated IGF-1-dependent transcriptional activity of unliganded ERa, but induced the activity of liganded ERa. Conclusions: ERa/IRS-1 interactions are direct and involve the ERa AF-1/DBD domain and IRS-1 domains mapping within N- and C-terminus. IRS-1 may act as a repressor of liganded ERa and coactivator of unliganded ERa

    Controlled Release of 5-FU from Chi–DHA Nanoparticles Synthetized with Ionic Gelation Technique: Evaluation of Release Profile Kinetics and Cytotoxicity Effect

    Get PDF
    The ionic gelation technique allows us to obtain nanoparticles able to function as carriers for hydrophobic anticancer drugs, such as 5-fluoruracil (5-FU). In this study, reticulated chitosan– docosahexaenoic acid (Chi–DHAr) nanoparticles were synthesized by using a chemical reaction between amine groups of chitosan (Chi) and carboxylic acids of docosahexaenoic acid (DHA) and the presence of a link between Chi and DHA was confirmed by FT-IR, while the size and morphology of the obtained Chi-DHAr nanoparticles was evaluated with dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. Drug-loading content (DLC) and drug-loading efficiency (DLE) of 5-FU in Chi-DHAr nanoparticles were 33.74 ± 0.19% and 7.9 ± 0.26%, respectively, while in the non-functionalized nanoparticles (Chir + 5FU), DLC, and DLE were in the ranges of 23.73 ± 0.14%, 5.62%, and 0.23%, respectively. The in vitro release profile, performed in phosphate buffer saline (PBS, pH 7.4) at 37 °C, indicated that the synthetized Chi–DHAr nanoparticles provided a sustained release of 5-FU. Based on the obtained regression coefficient value (R2), the first order kinetic model provided the best fit for both Chir and Chi-DHAr nanoparticles. Finally, cytotoxicity studies of chitosan, 5-FU, Chir, Chir + 5-FU, Chi-DHAr, and Chi-DHAr + 5-FU nanoparticles were conducted. Overall, Chi-DHAr nanoparticles proved to be much more biocompatible than Chir nanoparticles while retaining the ability to release the drug with high efficiency, especially towards specific types of cancerous cells

    FoxO3a as a positive prognostic marker and a therapeutic target in Tamoxifen-resistant breast cancer

    Get PDF
    Background: Resistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. Methods: FoxO3a involvement in the acquisition and reversion of tamoxifen resistance was assessed in vitro in three parental ER+ breast cancer cells, MCF-7, T47D and ZR-75-1, in the deriving Tamoxifen resistant models (TamR) and in Tet-inducible TamR/FoxO3a stable cell lines, by growth curves, PLA, siRNA, RT-PCR, Western blot, Immunofluorescence, Transmission Electron Microscopy, TUNEL, cell cycle, proteomics analyses and animal models. FoxO3a clinical relevance was validated in silico by Kaplan−Meier survival curves. Results: Here, we show that tamoxifen resistant breast cancer cells (TamR) express low FoxO3a levels. The hyperactive growth factors signaling, characterizing these cells, leads to FoxO3a hyper-phosphorylation and subsequent proteasomal degradation. FoxO3a re-expression by using TamR tetracycline inducible cells or by treating TamR with the anticonvulsant lamotrigine (LTG), restored the sensitivity to the antiestrogen and strongly reduced tumor mass in TamR-derived mouse xenografts. Proteomics data unveiled novel potential mediators of FoxO3a anti-proliferative and pro-apoptotic activity, while the Kaplan−Meier analysis showed that FoxO3a is predictive of a positive response to tamoxifen therapy in Luminal A breast cancer patients. Conclusions: Altogether, our data indicate that FoxO3a is a key target to be exploited in endocrine-resistant tumors. In this context, LTG, being able to induce FoxO3a, might represent a valid candidate in combination therapy to prevent resistance to tamoxifen in patients at risk

    po 058 unravelling the protective role of androgens androgen receptorin breast cancer when bad goes good

    Get PDF
    Introduction Androgen receptor (AR) expression in breast cancer growth and progression appears to be clinically relevant and disease context specific. In oestrogen receptor (ER)α-positive primary breast cancers, AR positivity correlates with lower tumour grade and a better clinical outcome. These clinical-pathological findings mirror the capability of androgens to counteract ERα-dependent proliferation in both normal mammary epithelium and ERα-positive breast cancer preclinical models in which androgen/AR-dependent pro-apoptotic effects have been also evidenced. Here we report a novel additional mechanism underlining the protective, anti-proliferative role exerted by AR signalling. This mechanism involves modulation of the expression, cellular distribution and function of BAD, a pro-apoptotic member of the Bcl-2 family proteins, whose expression is related to a significantly better disease free survival in (ER)α-positive human breast cancers. Material and methods MCF-7, TD47D, ZR-75 breast cancer cells; qReal Time PCR; western blotting (WB); immunofluorescence analysis (IF); immunoprecipitation assay (IP); DNA affinity precipitation assay; Chromatin Immunoprecipitation Assay. Results and discussions The expression of a panel of pro/anti-apoptotic proteins was investigated in cellular protein lysates from ERα/AR-positive MCF-7 cells cultured for 1, 3 and 6 days under androgen treatment. The expression of the anti-apoptotic Bcl-2 protein, or the pro-apoptotic BID and BAX remained unchanged, while a sustained increase in the expression of the pro-apoptotic BAD could be observed, reducing the Bcl-2/BAD ratio and, thus, shifting the delicate balance between inhibitors and inducers of cell death. Interestingly, androgens induced a marked BAD levels increase into the nuclear compartment in ERα/AR-positive MCF-7, T47D and ZR-75 as well as in ERα negative/AR-positive SKBR3 cells. The androgen-regulated intracellular localization of BAD involved an AR/BAD physical interaction, suggesting a nuclear role for BAD upon androgen stimulation. Indeed, androgens induced both AR and BAD recruitment at a AP-1 and at a ARE site within the cyclin D1 promoter region, contributing to explain the anti-proliferative effect of androgens in breast cancer cells. Conclusion We defined a novel mechanism by which androgens modulate BAD expression and force its ability to act as a cell cycle inhibitor through modulation of cyclin D1 gene transcriptional activity, strengthening the protective role of androgen signalling in estrogen-responsive breast cancer

    FoxO3a Drives the Metabolic Reprogramming in Tamoxifen-Resistant Breast Cancer Cells Restoring Tamoxifen Sensitivity

    Get PDF
    Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy

    Inhibition of ERβ Induces Resistance to Cisplatin by Enhancing Rad51–Mediated DNA Repair in Human Medulloblastoma Cell Lines

    Get PDF
    Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERβ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERβ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin–induced cytotoxicity in human medulloblastoma cell lines

    Insulin-like growth factor - Oestradiol crosstalk and mammary gland tumourigenesis

    Get PDF
    Development and differentiation of the mammary gland are dependent on the appropriate temporal expression of both systemically acting hormones and locally produced growth factors. A large body of evidence suggests that molecular crosstalk between these hormonal and growth factor axes is crucial for appropriate cell and tissue function. Two of the most important trophic factors involved in this process are the oestrogen (E) and insulin-like growth factor (IGF) molecular axes. The reciprocal crosstalk that exists between these pathways occurs at transcriptional/post-transcriptional and translational/post-translational levels regulate the expression and activity of genes involved in this process. In a clinical context an important consequence of such crosstalk in the mammary gland is the role which it may play in the aetiology, maintenance and development of breast tumours. Although oestradiol (E2) acting through oestrogen receptors α and β (ERα/β) is important for normal mammary gland function it can also provide a mitogenic drive to ER+ breast tumours. Therefore over several years anti-oestrogen therapeutic regimens in the form of selective oestrogen receptor modulators (SERMs - e.g. tamoxifen), aromatase inhibitors (AI e.g. anastrozole) or selective oestrogen receptor down regulators (SERDs - e.g. fulvestrant) have been used in an adjuvant setting to control tumour growth. Although initial response is usually encouraging, large cohorts of patients eventually develop resistance to these treatments leading to tumour recurrence and poor prognosis. There are potentially many routes by which breast cancer (BC) cells could escape anti-oestrogen based therapeutic strategies and one of the most studied is the possible growth factor mediated activation of ER(s). Because of this, growth factor modulation of ER activity has been an intensively studied route of molecular crosstalk in the mammary gland. The insulin-like growth factors (IGF-1 and -2) are amongst the most potent mitogens for mammary epithelial cells and there is accumulating evidence that they interact with the E2 axis to regulate mitogenesis, apoptosis, adhesion, migration and differentiation of mammary epithelial cells. Such interactions are bi-directional and E2 has been shown to regulate the expression and activity of IGF axis genes with the general effect of sensitising breast epithelial cells to the actions of IGFs and insulin. In this short review we discuss the evidence for the involvement of crosstalk between the insulin-like growth factor (IGF) and oestrogen axes in the mammary gland and comment on the relevance of such studies in the aetiology and treatment of BC
    • …
    corecore