290 research outputs found

    OntoMathPROOntoMath^{PRO} Ontology: A Linked Data Hub for Mathematics

    Full text link
    In this paper, we present an ontology of mathematical knowledge concepts that covers a wide range of the fields of mathematics and introduces a balanced representation between comprehensive and sensible models. We demonstrate the applications of this representation in information extraction, semantic search, and education. We argue that the ontology can be a core of future integration of math-aware data sets in the Web of Data and, therefore, provide mappings onto relevant datasets, such as DBpedia and ScienceWISE.Comment: 15 pages, 6 images, 1 table, Knowledge Engineering and the Semantic Web - 5th International Conferenc

    Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology

    Get PDF
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a parallel by French & McKenzie between mathematics and metaphysics to show that the whole field of analytic metaphysics, being useful not only for philosophy but also for science, should continue to exist as a largely autonomous field

    Evaluation of Noise Performance of Multi-Lane Highways in the State of Qatar

    Get PDF
    In recent years, a growing number of people are complaining to transportation authorities for the traffic noise as a result of increased traffic volume on the highways. Therefore, transportation authorities are actively pursuing ways to reduce the traffic noise. In recent years, quieter pavement has become one of the cost-effective ways of sustainable highway noise reduction. However, for design and construction of quieter pavements, proper and accurate noise measurement is of paramount importance for evaluating the noise level of existing pavement as well as evaluating noise level of newly constructed pavements. In this study, the variation of noise level among different lanes of existing multi-lane highways in the State of Qatar was examined. Tire-pavement noise was measured by using onboard sound intensity (OBSI) technique. OBSI test results showed that highest noise level was observed at outer lane of multilane highways. This is probably due to the pavement distress caused by the heavy vehicle travelling at the outer lane of multi-lane highways.This paper was made possible by the NPRP grant (NPRP 7-110-2-056) from the Qatar National Research Fund (a member of Qatar Foundation)Scopu

    RDFScape: Semantic Web meets Systems Biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent availability of high-throughput data in molecular biology has increased the need for a formal representation of this knowledge domain. New ontologies are being developed to formalize knowledge, e.g. about the functions of proteins. As the Semantic Web is being introduced into the Life Sciences, the basis for a distributed knowledge-base that can foster biological data analysis is laid. However, there still is a dichotomy, in tools and methodologies, between the use of ontologies in biological investigation, that is, in relation to experimental observations, and their use as a knowledge-base.</p> <p>Results</p> <p>RDFScape is a plugin that has been developed to extend a software oriented to biological analysis with support for reasoning on ontologies in the semantic web framework. We show with this plugin how the use of ontological knowledge in biological analysis can be extended through the use of inference. In particular, we present two examples relative to ontologies representing biological pathways: we demonstrate how these can be abstracted and visualized as interaction networks, and how reasoning on causal dependencies within elements of pathways can be implemented.</p> <p>Conclusions</p> <p>The use of ontologies for the interpretation of high-throughput biological data can be improved through the use of inference. This allows the use of ontologies not only as annotations, but as a knowledge-base from which new information relevant for specific analysis can be derived.</p

    SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SSWAP (<b>S</b>imple <b>S</b>emantic <b>W</b>eb <b>A</b>rchitecture and <b>P</b>rotocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies.</p> <p>Results</p> <p>There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at <url>http://sswap.info</url> (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at <url>http://sswap.info/protocol.jsp</url>, developer tools at <url>http://sswap.info/developer.jsp</url>, and a portal to third-party ontologies at <url>http://sswapmeet.sswap.info</url> (a "swap meet").</p> <p>Conclusion</p> <p>SSWAP addresses the three basic requirements of a semantic web services architecture (<it>i.e</it>., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: <it>i.e</it>., <it>i</it>) the fatal mutability of traditional interfaces, <it>ii</it>) the rigidity and fragility of static subsumption hierarchies, and <it>iii</it>) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.</p

    A unified framework for managing provenance information in translational research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A critical aspect of the NIH <it>Translational Research </it>roadmap, which seeks to accelerate the delivery of "bench-side" discoveries to patient's "bedside," is the management of the <it>provenance </it>metadata that keeps track of the origin and history of data resources as they traverse the path from the bench to the bedside and back. A comprehensive provenance framework is essential for researchers to verify the quality of data, reproduce scientific results published in peer-reviewed literature, validate scientific process, and associate trust value with data and results. Traditional approaches to provenance management have focused on only partial sections of the translational research life cycle and they do not incorporate "domain semantics", which is essential to support domain-specific querying and analysis by scientists.</p> <p>Results</p> <p>We identify a common set of challenges in managing provenance information across the <it>pre-publication </it>and <it>post-publication </it>phases of data in the translational research lifecycle. We define the semantic provenance framework (SPF), underpinned by the Provenir upper-level provenance ontology, to address these challenges in the four stages of provenance metadata:</p> <p>(a) Provenance <b>collection </b>- during data generation</p> <p>(b) Provenance <b>representation </b>- to support interoperability, reasoning, and incorporate domain semantics</p> <p>(c) Provenance <b>storage </b>and <b>propagation </b>- to allow efficient storage and seamless propagation of provenance as the data is transferred across applications</p> <p>(d) Provenance <b>query </b>- to support queries with increasing complexity over large data size and also support knowledge discovery applications</p> <p>We apply the SPF to two exemplar translational research projects, namely the Semantic Problem Solving Environment for <it>Trypanosoma cruzi </it>(<it>T.cruzi </it>SPSE) and the Biomedical Knowledge Repository (BKR) project, to demonstrate its effectiveness.</p> <p>Conclusions</p> <p>The SPF provides a unified framework to effectively manage provenance of translational research data during pre and post-publication phases. This framework is underpinned by an upper-level provenance ontology called Provenir that is extended to create domain-specific provenance ontologies to facilitate provenance interoperability, seamless propagation of provenance, automated querying, and analysis.</p

    The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Get PDF
    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA)
    corecore