135 research outputs found

    Indian genetic disease database

    Get PDF
    Indians, representing about one-sixth of the world population, consist of several thousands of endogamous groups with strong potential for excess of recessive diseases. However, no database is available on Indian population with comprehensive information on the diseases common in the country. To address this issue, we present Indian Genetic Disease Database (IGDD) release 1.0 (http://www.igdd.iicb.res.in)—an integrated and curated repository of growing number of mutation data on common genetic diseases afflicting the Indian populations. Currently the database covers 52 diseases with information on 5760 individuals carrying the mutant alleles of causal genes. Information on locus heterogeneity, type of mutation, clinical and biochemical data, geographical location and common mutations are furnished based on published literature. The database is currently designed to work best with Internet Explorer 8 (optimal resolution 1440 × 900) and it can be searched based on disease of interest, causal gene, type of mutation and geographical location of the patients or carriers. Provisions have been made for deposition of new data and logistics for regular updation of the database. The IGDD web portal, planned to be made freely available, contains user-friendly interfaces and is expected to be highly useful to the geneticists, clinicians, biologists and patient support groups of various genetic diseases

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Typology and distribution of small farms in Europe: Towards a better picture

    Get PDF
    The contribution of small farms to local food supply, food security and food sovereignty is widely acknowledged at a global level. In the particular case of Europe, they often are seen as an alternative to large and specialised farms. Assessing the real role of small farms has been limited by a lack of information, as small farms are frequently omitted from agricultural censuses and national statistics. It is also well acknowledged that small farms differ widely, and are distributed according to different spatial patterns across Europe, fulfilling different roles according to the agriculture and territorial characteristics of each region. This paper presents the result of a novel classification of small farms at NUTS-3 level in Europe, according to the relevance of small farms in the agricultural and territorial context of each region, and based on a typology of small farms considering different dimensions of farm size. The maps presented result from an extensive data collection and variables selected according to European wide expert judgement, analysed with advanced cluster procedures. The results provide a fine grained picture of the role of small farms at the regional level in Europe today, and are expected to support further data analysis and targeted policy intervention

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    ITER fast ion confinement in the presence of the European test blanket module

    No full text
    This paper addresses the confinement of thermonuclear alpha particles and neutral beam injected deuterons in the 15 MA Q = 10 inductive scenario in the presence of the magnetic perturbation caused by the helium cooled pebble bed test blanket module using the vacuum approximation. Both the flat top phase and plasma ramp-up are studied. The transport of fast ions is calculated using the Monte Carlo guiding center orbit-following code ASCOT. A detailed three-dimensional wall, derived from the ITER blanket module CAD data, is used for evaluating the fast ion wall loads. The effect of the test blanket module is studied for both overall confinement and possible hot spots. The study indicates that the test blanket modules do not significantly deteriorate the fast ion confinement

    ITER fast ion confinement in the presence of the European test blanket module

    No full text
    This paper addresses the confinement of thermonuclear alpha particles and neutral beam injected deuterons in the 15 MA Q = 10 inductive scenario in the presence of the magnetic perturbation caused by the helium cooled pebble bed test blanket module using the vacuum approximation. Both the flat top phase and plasma ramp-up are studied. The transport of fast ions is calculated using the Monte Carlo guiding center orbit-following code ASCOT. A detailed three-dimensional wall, derived from the ITER blanket module CAD data, is used for evaluating the fast ion wall loads. The effect of the test blanket module is studied for both overall confinement and possible hot spots. The study indicates that the test blanket modules do not significantly deteriorate the fast ion confinement
    corecore