63 research outputs found

    Cover Crops and Corn Residue Removal: Impacts on Soil Hydraulic Properties and Their Relationships with Carbon

    Get PDF
    Large-scale crop residue removal may negatively affect soil water dynamics. Integrating cover crop (CC) with crop residue management can be a strategy to offset potential adverse effects of residue removal. We studied: (i) the impact of corn (Zea mays L.) residue removal (56%) with and without the use of winter rye (Secale cereale L.) CC on soil hydraulic properties, (ii) whether CC would ameliorate residue removal effects on hydraulic properties, and (iii) relationships of hydraulic properties with soil organic C (SOC) and other properties under irrigated no-till continuous corn on a silt loam in south central Nebraska after 5 and 6 yr of management. Cover crops did not affect soil hydraulic properties. However, residue removal reduced cumulative water infiltration by about 45% in one year. Across years, residue removal reduced plant available water (PAW) by 32% and mean weight diameter of water-stable aggregates (MWD) by 23% for the upper 5-cm soil depth. Under no CC, residue removal reduced SOC concentration by 25% in the 0- to 5-cm and by 11% in the 5- to 10-cm depths. Under residue removal, CC increased SOC concentration by 18% in the 0- to 5-cm and by 8% in the 5 to 10-cm depths. Cover crop did not completely offset the residue removal-induced decrease in SOC concentration in the upper 5-cm depth. Plant available water decreased as SOC concentration and MWD decreased. After 6 yr, corn residue removal adversely affected soil hydraulic properties and SOC concentration, but CC was unable to fully offset such adverse impacts

    Did cover crop or animal manure ameliorate corn residue removal effects on soil mechanical properties after 10 years?

    Get PDF
    Crop residue removal may negatively affect soil mechanical properties, which are key components of soil quality. To evaluate potential long-term effects, we assessed the 10-yr impact of corn (Zea mays L.) residue removal (59 % of non-grain biomass annually) on surface soil mechanical properties (0–20 cm). We also evaluated whether adding carbon (C) amendments, such as using a winter rye (Secale cereale L.) cover crop or surface-applying cattle manure (24 Mg ha− 1 biannually) can ameliorate the effects of crop residue removal. This long-term study was under irrigated no-till continuous corn on a silt loam soil in south-central Nebraska, USA. Measurements included soil penetration resistance, field bulk density, aggregate strength, Atterberg limits (liquid limit, plastic limit, and plasticity index), Proctor maximum bulk density, and the water content at which the Proctor maximum bulk density (critical water content) occurs. Reduction in soil organic carbon (SOC) concentration explained most of the changes in soil mechanical properties. Long-term corn residue removal increased penetration resistance (+40 %) for the 0–20 cm depth, and reduced aggregate strength (− 44 %), plasticity index (− 22 %), and critical water content (− 13 %) in the 0–5 cm depth. Residue removal also reduced field bulk density (− 5%), liquid limit (− 12 %), and plastic limit (− 10 %) in the 0–10 cm depth, but increased Proctor maximum bulk density (+8 %) in the 0–5 cm depth. Winter rye cover crop reduced field bulk density (− 5%, 0–15 cm depth) and increased penetration resistance (+52 %, 0–20 cm depth). Surface-applied manure amendments increased the near-surface soil liquid limit (+8 %) and plastic limit (+8 %) in the 0–5 cm depth. Given the high rate of residue removal used in this experiment, our findings support that excessive corn residue removal over the long-term (~10 years) negatively affects near-surface soil mechanical properties, but that use of winter rye cover crop or surface-applied manure can minimally to partially ameliorate these effect

    Pulmonary stretch receptor activity during partial liquid ventilation in cats with healthy lungs

    Get PDF
    Aim: To study whether pulmonary stretch receptor (PSR) activity in mechanically ventilated young cats with healthy lungs during partial liquid ventilation (PLV) is different from that during gas ventilation (GV). Methods: In 10 young cats (4.4 +/- 0.4 months, 2.3 +/- 0.3 kg; mean B SD), PSR instantaneous impulse frequency (PSR f(imp)) was recorded from single fibres in the vagal nerve during GV and PLV with perfluorocarbon (30 ml/kg) at increasing positive inspiratory pressures (PIP; 1.2, 1.8, 2.2 and 2.7 kPa), and at a positive end-expiratory pressure of 0.5 kPa. Results: All PSRs studied during GV maintained their phasic character with increased impulse frequency during inspiration during PLV. Peak PSR fimp was lower at PIP 1.2 kPa (p < 0.05) and at PIP 2.7 kPa (p = 0.10) during PLV than during GV, giving a lower number of PSR impulses at these two settings during PLV (p < 0.05). Conclusion: The phasic character of PSR activity is similar during GV and PLV. PSR activity is not higher during PLV than during GV in cats with healthy lungs, indicating no extensive stretching of the lung during PLV. Copyright (C) 2004 S. Karger AG, Basel

    Transparent reporting form

    Get PDF
    MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Breathing Pattern and Lung Mechanics during Assisted Ventilation Response of Slowly Adapting Pulmonary Stretch Receptors and Effects on Phrenic Nerve Activity in Cats with Normal and Surfactant Depleted Lungs

    No full text
    Different modes of assisted ventilation were investigated in cats before and after lung lavage and after instillation of surfactant. The activity of single units of slowly adapting pulmonary stretch receptors (PSRs) in the vagal nerve and the integrated phrenic nerve activity were recorded. The instantaneous impulse frequency (fimp) of PSRs was calculated and related to transpulmonary pressure (Ptp), tidal volume (Vt) and the calculated energy storage of the lung (ΣP*ΔV). Respiratory rate (RR), inspiratory and expiratory time, and Vt were measured, and their coefficients of variation were calculated. During assist control (A/C) ventilation with different pressure waveforms, PNA was shorter and lower in amplitude with squarewave pressure waveform than with linear and sinusoidal pressure waveforms in cats with normal lungs, concomitantly with earlier peak fimp during inspiration and prolonged fimp during expiration. The type of pressure waveform can thus influence the spontaneous breathing effort during A/C ventilation. Proportional assist ventilation (PAV) is a new mode of assisted ventilation which servo-controls the applied airway pressure continuously in proportion to the breathing effort. After lung lavage and surfactant instillation, PAV improves ventilation markedly, with lower PNA and oesophageal pressure deflection and higher RR and variability of breathing, compared to CPAP. In addition, an earlier and higher maximal fimp was observed during PAV. Under conditions of low work and maintained control of breathing, PAV seems to be an attractive mode of ventilatory support. Low-threshold (LT) and high-threshold (HT) PSRs respond to the surfactant content of the lung partly independent of Ptp and Vt in spontaneously breathing cats, implying a possible effect of surfactant on PSRs. The PSR fimp normalized to ΣP*ΔV confirmed these findings and showed that LT and HT PSRs are intrinsically the same. After instillation of surfactant, compliance and PSR activity increased, but the breathing still remained shallow and rapid, suggesting a control of breathing less dominated by PSR activity

    Cover Crops and Corn Residue Removal: Impacts on Soil Hydraulic Properties and Their Relationships with Carbon

    Get PDF
    Large-scale crop residue removal may negatively affect soil water dynamics. Integrating cover crop (CC) with crop residue management can be a strategy to offset potential adverse effects of residue removal. We studied: (i) the impact of corn (Zea mays L.) residue removal (56%) with and without the use of winter rye (Secale cereale L.) CC on soil hydraulic properties, (ii) whether CC would ameliorate residue removal effects on hydraulic properties, and (iii) relationships of hydraulic properties with soil organic C (SOC) and other properties under irrigated no-till continuous corn on a silt loam in south central Nebraska after 5 and 6 yr of management. Cover crops did not affect soil hydraulic properties. However, residue removal reduced cumulative water infiltration by about 45% in one year. Across years, residue removal reduced plant available water (PAW) by 32% and mean weight diameter of water-stable aggregates (MWD) by 23% for the upper 5-cm soil depth. Under no CC, residue removal reduced SOC concentration by 25% in the 0- to 5-cm and by 11% in the 5- to 10-cm depths. Under residue removal, CC increased SOC concentration by 18% in the 0- to 5-cm and by 8% in the 5 to 10-cm depths. Cover crop did not completely offset the residue removal-induced decrease in SOC concentration in the upper 5-cm depth. Plant available water decreased as SOC concentration and MWD decreased. After 6 yr, corn residue removal adversely affected soil hydraulic properties and SOC concentration, but CC was unable to fully offset such adverse impacts

    Do Cover Crops and Corn Residue Removal Affect Soil Thermal Properties?

    Get PDF
    Soil thermal properties govern the transport and storage of heat in the soil. How management practices such as crop residue removal and cover crop (CC) use affect these soil properties is not well understood. For example, CCs could provide physical cover and improve soil properties after main crop residue removal and thus ameliorate the negative effects of residue removal on soil thermal properties. We measured changes in soil thermal properties including soil thermal conductivity, thermal diffusivity, volumetric heat capacity, and related properties under corn (Zea mays L.) residue removal with and without winter cereal rye (Secale cereale L.) under a 6-yr irrigated no-till continuous corn experiment on a silt loam in south central Nebraska. Cover crops did not affect thermal properties, but corn residue removal reduced field thermal conductivity by 12 to 41% and volumetric heat capacity by 6 to 49% during the growing season for the 0- to 5-cm depth. Residue removal also reduced laboratory thermal conductivity by 19% at –0.03-MPa and by 28% at –1.5-MPa matric potential. Residue removal also reduced volumetric heat capacity in the laboratory by 23% at both matric potentials in the 0- to 10-cm depth. Neither residue removal nor CC affected thermal diffusivity. Thermal conductivity was more strongly correlated with soil water content than with bulk density and soil organic C. Overall, CC had no effect on thermal properties, but corn residue removal could reduce the soil’s ability to conduct heat relative to no removal
    • …
    corecore