2,796 research outputs found

    Sex variation in patellar tendon kinetics during running

    Get PDF
    Purpose. The aim of the current investigation was to determine whether female recreational runners exhibit distinct patellar tendon loading patterns in relation to their male counterparts. Methods. Twelve male (age 26.55 ± 4.11 years, height 1.78 ± 0.11 m, mass 77.11 ± 5.06 kg) and twelve female (age 26.67 ± 5.34 years, height 1.67 ± 0.12 m, mass 63.28 ± 9.75 kg) runners ran over a force platform at 4.0 m · s –1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system which operated at 250 Hz. Patellar tendon loads were examined using a predictive algorithm. Sex differences in limb, knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that patellar tendon force (male = 6.49 ± 2.28, female = 7.03 ± 1.35) and patelllar tendon loading rate (male = 92.41 ± 32.51, female = 111.05 ± 48.58) were significantly higher in female runners. Conclusions. Excessive tendon loading in female runners indicates that female runners may be at increased risk of patellar tendon pathologies

    Effects of shoes on kinetics and kinematics of the squash forward lunge in male players

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Squash is associated with a high incidence of chronic injuries. Currently there is a trend in many sports for players to select minimalist footwear. The aim of the current investigation was to examine the effects of squashspecific, running shoes and minimalist footwear on the kinetics and 3-D kinematics of the lunge movement in squash players. Twelve male squash players performed lunge movements whilst wearing minimalist, running shoe and squash-specific footwear. 3-D kinematics of the lower extremities were measured using an eightcamera motion analysis system alongside kinetic and tibial acceleration information which were obtained using a force platform and an accelerometer. Differences between footwear were examined using one-way repeated measures ANOVA. The results show firstly that loading rate parameters were significantly greater in the minimalist (average = 85.36B.W/s and instantaneous = 179.09B.W/s) footwear in relation to the squashspecific (average = 38.66 B.W/s and instantaneous = 50.73B.W/s) and running footwear (average = 37.62B.W/s and instantaneous = 48.14B.W/s). In addition, tibial acceleration parameters were also significantly greater in the minimalist (peak tibial acceleration = 8.45 g and tibial acceleration slope = 422.28g/s) footwear in relation to the squash-specific (peak tibial acceleration = 4.33 g and tibial acceleration slope = 182.57g/s) and running footwear (peak tibial acceleration = 4.81 g and tibial acceleration slope = 226.72g/s). The significant increase in impact loading in the minimalist footwear therefore suggests this type of shoe may place squash players at an increased risk of developing impact-related chronic injuries.Peer reviewedFinal Published versio

    Multi-segment foot kinematics and plantar fascia strain during treadmill and overground running

    Get PDF
    Although physiologically beneficial, running is known to be associated with a high incidence of chronic injuries. Excessive coronal and transverse plane motions of the foot segments and strain experienced by the plantar fascia are linked to the development of a number of chronic injuries. This study examined differences in multi-segment foot kinematics and plantar fascia strain during treadmill and overground running. Twelve male recreational runners ran at 4.0 m.s-1 in both treadmill and overground conditions. Multi-segment foot kinematics and plantar fascia strain were measured using an eight-camera motion analysis system and contrasted using paired samples t-tests. The results showed that plantar fascia strain was significantly greater in the overground condition (8.23 ± 2.77) compared to the treadmill (5.53 ± 2.25). Given the proposed relationship between excessive plantar fascia strain and the etiology of injury, overground running may be associated with a higher incidence of injury although further work is necessary before causation can be confirmed

    Effects of new military footwear on knee loading during running

    Get PDF
    Military recruits are known to be susceptible to chronic injuries. The knee is the most common injury site and patellofemoral pain has been demonstrated as the leading mechanism for medical military discharge. Military boots have been cited as a key mechanism responsible for the high incidence of chronic injuries. The British Army has therefore introduced two new footwears – a cross-trainer and running shoe to reduce the incidence of chronic injuries. The aim of this study was to compare knee joint kinetics of the cross-trainer and running shoe in relation to conventional military boots. Twelve male participants ran at 4.0 m s−1 in each footwear condition. Knee joint kinetics was obtained and contrasted using repeated-measures ANOVAs. The results showed that patellofemoral load was significantly greater in the military boots. However, peak knee abduction moment was significantly greater in the running shoes. On the basis of the findings from this study, it is recommended that recruits who are susceptible to injuries mediated through excessive knee loads select the cross-trainer for their running activities

    The effects of shoe temperature on the kinetics and kinematics of running

    Get PDF
    The aim of the current investigation was to examine the effects of cooled footwear on the kinetics and kinematics of running in comparison to footwear at normal temperature. Twelve participants ran at 4.0 m/s ± 5% in both cooled and normal temperature footwear conditions over a force platform. Two identical footwear were worn, one of which was cooled for 30 min. Lower extremity kinematics were obtained using a motion capture system and tibial accelerations were measured using a triaxial accelerometer. Differences between cooled and normal footwear temperatures were contrasted using paired samples t-tests. The results showed that midsole temperature (cooled = 4.21 °C and normal = 23.25 °C) and maximal midsole deformation during stance (cooled = 12.85 mm and normal = 14.52 mm) were significantly reduced in the cooled footwear. In addition, instantaneous loading rate (cooled = 186.21 B.W/s and normal = 167.08 B W/s), peak tibial acceleration (cooled = 12.75 g and normal = 10.70 g) and tibial acceleration slope (cooled = 478.69 g/s and normal = 327.48 g/s) were significantly greater in the cooled footwear. Finally, peak eversion (cooled = −10.57 ° and normal = −7.83°) and tibial internal rotation (cooled = 10.67 ° and normal = 7.77°) were also shown to be significantly larger in the cooled footwear condition. This study indicates that running in cooled footwear may place runners at increased risk from the biomechanical parameters linked to the aetiology of injuries

    The Effects of Barefoot and Shod Running on Limb and Joint Stiffness Characteristics in Recreational Runners.

    Get PDF
    The authors aimed to determine the effects of barefoot (BF) and several commercially available barefoot-inspired (BFIS) footwear models on limb and joint stiffness characteristics compared with conventional footwear (CF). Fifteen male participants ran over a force platform at 4.0 m.s-1, in BF, BFIS, and CF conditions. Measures of limb and joint stiffness were calculated for each footwear. The results indicate that limb and knee stiffness were greater in BF and minimalist BFIS than in CF. CF and more structured BFIS were associated with a greater ankle stiffness compared with BF and minimalist BFIS. These findings serve to provide further insight into the susceptibility of runners to different injury mechanisms as a function of footwear

    Sex differences in limb and joint stiffnes in recreational runners

    Get PDF
    Purpose. Female runners are known to be at greater risk from chronic running injuries than age-matched males, although the exact mechanisms are often poorly understood. The aim of the current investigation was to determine if female recreational runners exhibit distinct limb and joint stiffness characteristics in relation to their male counterparts. Methods. Fourteen male and fourteen female runners ran over a force platform at 4.0 m · s–1. Lower limb kinematics were collected using an eight-camera optoelectric motion capture system operating at 250 Hz. Measures of limb and joint stiffness were calculated as a function of limb length and joint moments divided by the extent of limb and joint excursion. All stiffness and joint moment parameters were normalized to body mass. Sex differences in normalized limb and knee and ankle joint stiffness were examined statistically using independent samples t tests. Results. The results indicate that normalized limb (male = 0.18 ± 0.07, female = 0.37 ± 0.10 kN · kg · m–1) and knee stiffness (male = 5.59 ± 2.02, female = 7.34 ± 1.78 Nm · kg · rad–1) were significantly greater in female runners. Conclusions. On the basis that normalized knee and limb stiffness were shown to be significantly greater in female runners, the findings from the current investigation may provide further insight into the aetiology of the distinct injury patterns observed between sexes

    Influence of minimalist footwear on knee and ankle loads during the squash lunge

    Get PDF
    Squash is associated with a high incidence of knee and ankle joint injuries. The aim of this work was to examine the effects of squash specific, running shoes and minimalist footwear on knee and ankle loads during the lunge movement in squash players. Twelve male squash players performed lunge movements whilst wearing squash specific, running shoes and minimalist footwear. The loads experienced by the knee and ankle joints were calculated. Patellofemoral forces were significantly greater in running shoes (5.10 B.W) compared to minimalist footwear (4.29 B.W). Achille tendon forces were significantly larger in the minimalist footwear (3.10 B.W) compared to the running shoes (2.64 B.W) and squash specific footwear (2.88 B.W). This shows that whilst minimalist footwear may reduce the incidence of knee pathologies in squash players corresponding increases in ankle loading may induce an injury risk at this joint

    The influence of different force and pressure measuring transducers on lower extremity kinematics measured during walking

    Get PDF
    The examination of synchronous three dimensional (3-D) kinetics and kinematics of walking in laboratory based analyses typically requires participants/patients to make foot contact with a force or pressure measuring device. However it has been proposed that this may lead to targeting whereby participants modify their natural gait pattern in order to ensure contact with the device. This study aimed to determine the extent to which an embedded force plate (EFP) and two different pressure mats PMs affect natural gait kinematics. Male participants (n=12, age 24.23 SD 4.22 y, height 1.74m SD 0.10, mass 75.78 SD 6.90kg) walked at a velocity of 1.25 m.s-1 along a 22m walkway in four different conditions. 1. EFP, 2. FootScan (FS) PM, 3.Matscan (MS) PM, 4.No device (ND). 3-D angular kinematic parameters were collected using an eight camera motion analysis system.Differences in kinematics were examined using repeated measures ANOVAs. Significant differences were observed in hip abduction, knee flexion/extension and knee abduction between various conditions and may warrant consideration in future research. No significant differences were reported at the ankle joint in any conditions. Comparing the PMs no significant differences were observed, however significant differences between the MS and the EFP and ND conditions were identified. The research supports the efficacy of collecting gait kinematics at the ankle joint and in most variables measured at the knee and hip joints

    Influence of a knee brace intervention on perceived pain and patellofemoral loading in recreational athletes

    Get PDF
    Background: The current investigation aimed to investigate the effects of an intervention using knee bracing on pain symptoms and patellofemoral loading in male and female recreational athletes. Methods: Twenty participants (11 males & 9 females) with patellofemoral pain were provided with a knee brace which they wore for a period of 2 weeks. Lower extremity kinematics and patellofemoral loading were obtained during three sport specific tasks, jog, cut and single leg hop. In addition their self-reported knee pain scoreswere examined using the Knee injury and Osteoarthritis Outcome Score. Datawere collected before and after wearing the knee brace for 2 weeks. Findings: Significant reductions were found in the run and cut movements for peak patellofemoral force/pressure and in all movements for the peak knee abduction moment when wearing the brace. Significant improvements were also shown for Knee injury and Osteoarthritis Outcome Score subscale symptoms (pre: male= 70.27, female = 73.22 & post: male = 85.64, female = 82.44), pain (pre: male = 72.36, female = 78.89 & post: male = 85.73, female = 84.20), sport (pre: male = 60.18, female = 59.33 & post: male = 80.91, female =79.11), function and daily living (pre: male = 82.18, female = 86.00 & post: male = 88.91, female = 90.00) and quality of life (pre: male= 51.27, female= 54.89 & post: male= 69.36, female= 66.89). Interpretation:Male and female recreational athleteswho suffer frompatellofemoral pain can be advised to utilise knee bracing as a conservative method to reduce pain symptoms
    corecore