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Effects of new military footwear on knee loading during running

Jonathan Sinclaira*, Paul John Taylorb and Stephen Atkinsa

aCentre for Applied Sport and Exercise Science, University of Central Lancashire, Preston, United KingdomQ1 ; bSchool of Psychology,
University of Central Lancashire, Preston, United KingdomQ2

(Received 1 October 2014; accepted 24 June 2015)

Military recruits are known to be susceptible to chronic injuries. The knee is the most common injury site and
patellofemoral pain has been demonstrated as the leading mechanism for medical military discharge. Military boots have
been cited as a key mechanism responsible for the high incidence of chronic injuries. The British Army has D1 therefore
introduced two new footwears � a cross-trainer and D2running shoe to reduce the incidence of chronic injuries. The aim of
thisD3 study was to compare knee joint kinetics of the cross- D4trainer and running shoe in relation to conventional military
boots. Twelve male participants ran at 4.0 m D5 s¡1 in each footwear condition. Knee joint kinetics D6was obtained and
contrasted using repeated-measures ANOVAsQ3 . The results showed that patellofemoral load was significantly greater in the
military boots. However, peak knee abduction moment was significantly greater in the running shoes. On the basis of the
findings from this D7 study, it is recommended that recruits who are susceptible to injuries mediated through excessive knee
loads select the cross-trainer for their running activities.
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Introduction

Chronic injuries in military populations result in a large

number of missed training days at a significant monetary

cost to the military itself (Hauret, Jones, Bullock,

Canham-Chervak, & Canada D8, 2010; Sinclair & Taylor,

2014). Clinical reports show an occurrence rate of 13% to

31% in male recruits (Bensel & Kish, 1983Q4 ; Kaufman,

Brodine, Shaffer, Johnson, & Cullison D9, 1999; Ross 1993a,

1993b). D10High-volume running activities have been pro-

posed as one of the primary physical mechanisms for

chronic injury incidence in military recruits (Ross, 1993a,

1993b; Ross & Allsopp 2002).

Patellofemoral pain syndrome has been demonstrated

as the most common chronic injury in runners (Taunton

et al., 2002Q5 ). Patellofemoral disorders are associated with

pain which initiates as a result of the contact of the distal

end of the femur with the posterior surface of the patella

during dynamic activities ( D11Besier, Gold, Beaupre, & Delp D12,

2005). Patellofemoral pain is debilitating and has also

been shown to be a pre D13cursor to the initiation and progres-

sion of osteoarthritis (Crossley 2014; Thomas, Wood,

Selfe, & Peat D14, 2010). Although several biomechanical/

anatomical parameters are proposed as being implicated

in the aetiology of patellofemoral pain, excessive and

habitual loading of the patellofemoral joint (Ho,

Blanchette, & Powers D15, 2012; La Bella, 2004Q6 ; Messier,

Davis, Curl, Lowery, & Pack D16, 1991) as well as increased

internal knee abduction moments (Myer et al., 2015; Sig-

ward, Pollard, & Powers D17, 2012) are traditionally linked to

the initiation and progression of patellofemoral

symptoms.

It has been established in the aetiological studies of

military personnel that patellofemoral pain is a frequent

complaint in recruits (Boling et al., 2009; Jones, Perrotta,

Canham-Chervak, Nee, & Brundage D18, 2000; Milgrom

et al., 1988). Importantly, chronic patellofemoral pain has

been shown to be the leading mechanism for medical dis-

charge from basic military training (Gemmell, 2002).

Conservative management of patellofemoral disorders is

desirable as opposed to operative interventions, and the

efficacy of different clinical approaches has been explored

(Barton, Lack, Hemmings, Tufail, & Morrissey, 2015 D19).

Despite this, however, there is a paucity of information in

biomechanical literature regarding treatment mechanisms

designed to reduce the loads experienced by the patellofe-

moral joint, indicating that there is a requirement for fur-

ther study of this area.

Traditional military boots have been cited as a key

extrinsic parameter responsible for the high incidence of

injuries in recruits. Military boots are associated with poor

impact attenuation and high foot plantar pressures (House,

Waterworth, Allsopp, & DixonD20, 2002; Nunns, Stiles, &

DixonD21, 2012; Paisis, Hanley, Havenetidis, & BissasD22, 2013;

Sinclair & Taylor, 2014), but malD23alignment of the lower
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extremities have also been observed when running in these

footwear (Sinclair & Taylor, 2014). The British military

D24has recently introduced two new footwear models,D25 a cross-

trainer (PT-03) and running shoe (PT1000), which are now

provided to each new recruit. These new footwears are

designed to reduce the high incidence of chronic injuries

associated with running activities.

The effects of these new footwears on the kinetics and

kinematics of running have been considered previously.

Sinclair and Taylor (2014) demonstrated that impact load-

ing was significantly greater when running in the military

boot compared with the cross-D26trainer and running shoe,

which the authors attributed to a lack of midsole cushion-

ing in the military boot. The kinematic analysis indicated

that, in comparison with the cross-trainer and running

shoe, running in military boots was associated with signif-

icantly greater eversion and tibial internal rotation. The

effects of different footwear on the loads experienced by

the patellofemoral joint have also been examined previ-

ously. Sinclair (2014) demonstrated that barefoot and

barefoot- D27inspired footwear significantly reduced patello-

femoral loads in comparison to the conventional footwear.

Similarly, Bonacci, Vicenzino, Spratford, and Collins

D28(2013) showed that running barefoot mediated significant

reductions in the load experienced by the patellofemoral

joint. However, the influence of military footwear on the

loads experienced by the patellofemoral joint has yet to be

examined.

This D29 study aims to examine patellofemoral joint load-

ing when running in military boots, when compared to

cross-trainer and running shoe conditions using a bio-

mechanical modelling approach. This study tests the

hypothesis that knee load will be significantly greater

when running in military boots.

Methods

Participants

Twelve male participants volunteered to take part in this

study. The participants mean characteristics were D30 age

26.3 § 5.9 years, height 175.6 § 6.1 cm and body mass

73.9 § 5.2 kg. Participants were recreational runners who

trained at least three D31 times per week and had a minimum

of three years of running experience. The sample size was

selected on the basis of previous work investigating the

mechanics of running in military footwear (Nunns et al.,

2012; Paisis et al., 2013; Sinclair, Hobbs, Taylor,

Currigan, & GreenhalghD32, 2014). All participants were

right- D33foot dominant and considered to exhibit a rearfoot

strike pattern as they demonstrated a clear first peak in

their vertical ground reaction force time-curve (Cavanagh

& Lafortune, 1980). All reported as being free from mus-

culoskeletal pathology at the time of data collection and

provided a written informed consent. Ethical approval

was provided by the University of Central Lancashire, in

accordance with the procedures outlined in the Declara-

tion of Helsinki.

Procedure

The participants ran across a 22 m biomechanics labora-

tory at 4.0 m D34 s¡1 § 5%. The participants struck a piezo-

electric force platform (Kistler Instruments, Model

9281CAD35), collecting at 1000 Hz, with their dominant foot

(Sinclair, Hobbs et al., 2014). The stance phase of the run-

ning cycle was delineated as the time over which more

than 20 N of vertical force was applied to the force plat-

form. Running speed was controlled using timing gates

(SmartSpeed Ltd UK). Three-dimensional (3D) kinematic

information was captured with a frequency of 250 Hz,

using a D3610 camera motion analysis system (Qualisys Med-

ical AB, Goteburg, Sweden). Kinematic and kinetic data

were obtained synchronously and interfaced using

Qualisys D37Track D38Manager software. Participants completed

five trials in each of the three footwear conditions. The

order in which participants performed in each footwear

condition was counterbalanced. As the experimental foot-

wear were novel to participants they were given a period

to familiarize prior to the commencement of data collec-

tion. This involved 5 minutes of running through the test-

ing area without concern for striking the force platform in

accordance with the protocol of Sinclair, Greenhalgh,

Brooks, Edmundson, and Hobbs D39 (2013).

3D kinematics D40was quantified using the calibrated ana-

tomical systems D41 technique (Cappozzo D42, Catani, Leardini,

Benedeti, & Della D43, 1995). The anatomical frames of the

shank and thigh were defined using retroreflective markers

positioned onto the greater trochanter, medial and lateral

femoral epicondyles and medial and lateral malleoli.

Additional markers were also positioned bilaterally onto

the anterior superior iliac spines (ASIS). The distal and

proximal aspects of the shank were delineated as the mid-

point between the malleoli and femoral epicondyle

markers (Sinclair, Hebron, & Taylor D44, 2015). The proximal

aspects of the thigh wD45ere delineated using the positions of

the ASIS markers (Sinclair, Hobbs et al., 2014). The Z

(transverse) axis was oriented vertically from the distal

segment end to the proximal segment end. The Y (coro-

nal) axis was oriented in the segment from posterior to

anterior. Finally, the X (sagittal) axis orientation was

determined using the right- D46hand rule and was oriented

from medial to lateral. Carbon-fibre tracking clusters were

positioned onto both segments. The carbon-fib D47re clusters

had dimensions in accordance with Cappozzo, Cappello,

Della-Croce, and PensalfiniD48 (1997) recommendations.

Static calibration trials were obtained allowing the posi-

tions of the anatomical markers to be referenced in rela-

tion to the tracking clusters. Previous work has confirmed

that the reliability of this marker configuration for the

2 J. Sinclair et al.
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quantification of joint kinetics and moments is very high

(Sinclair et al., 2012).

Experimental footwear

The shoes utilized during this study consisted of a regula-

tion military boot (combat scale 95), army issue cross-

trainer (PT-03, UK running shoe (PT1000, UK gear, War-

wickshire, UK) (Figure 1). The military boots feature a

D49polyurethane midsole and have heel and forefoot heights

of 24 D50 and 13 mm. The PT-03 features an EVAQ7 midsole

and has a heel and forefoot heights of 38 D51 and 23 mm. The

PT1000 feature an EVA midsole and have heel and fore-

foot heights of 32 D52 and 20 mm. The shoes were the same

for all runners; they differed in size only (UK sizes 7�10

in men’s shoe D53).

Data processing

Dynamic running trials were digitized using Qualisys

Track Manager in order to identify anatomical and track-

ing markers then exported as C3D files in to Visual 3D

(C-Motion Inc., Germantown, MD, USA). Kinetic and

kinematic information were filtered at 50 D59 and 12 Hz,

respectively using a Butterworth D60low-pass four D61th- D62order

zero-lag filter (Sinclair, 2014). Knee kinematics wasD63 calcu-

lated using an XYZ cardan sequence of rotations and kine-

matic curves were normalized to 100% of the stance phase.

Knee joint kinetics wasD64 computed using Newton�Euler

inverse-dynamics allowing net internal joint moments to be

calculated. Net knee joint moments were normalized to

body mass by dividing by body mass (ND65¢m/kg).

The load experienced by the knee joint was quantified

initially using the peak knee extensor and abduction

moments. Patellofemoral contact force (PTCF) and

patellofemoral contact pressure (PTCP) were estimated

using the knee flexion angle (KFA) and knee extensor

moment (KEM) as input parameters into the biomechanical

model of Ho et al. (2012). This technique has been adopted

previously to resolve differences in PTF Q8and PP when

wearing different footwear (Bonacci et al., 2013; Sinclair,

2014). The effective moment arm of the quadriceps muscle

(QMA) was calculated as a function of KFA using a non-

linear equation, based on cadaveric information presented

by van Eijden, Kouwenhoven, Verburg, and WeijsD66 (1986):

QMAD 0:00008 KFA3 ¡ 0:013 KFA2 C 0:28 KFAC 0:046:

Quadriceps force (FQ) was calculated using the below

formula D67

FQDKEM=QMA:

PTCF was estimated using the FQ and a constant (C):

PTCFD FQ C:

The C was described in relation to KFA using the

equation described by van Eijden et al. (1986):

CD ð0:462C 0:00147 KFA2 ¡ 0:0000384 KFA2Þ=

ð1¡ 0:0162 KFAC 0:000155 KFA2 ¡ 0:000000698 KFA3Þ:

PTCP (MPa) was calculated using the PTCF divided

by the patellofemoral contact area. The contact area was

delineated by fitting a seco D68nd-D69order polynomial curve to

the data of Powers, Lilley, and Lee D70 (1998) showing patel-

lofemoral contact areas at varying levels of KFA (83 mm2

at 0�, 140 mm2 at 15�, 227 mm2 at 30�, 236 mm2 at 45�,
235 mm2 at 60�, and 211 mm2 at 75�).

PTCPDPTCF=contact area:

PTCF was normalized to bodyweight (B.W) by dividing

by participants’ bodyweight. PTCF loading rate (B.WD71 s¡1)

was calculated as a function of the change in PTCF force

from initial contact to peak force divided by the time taken

to peak force.

The robustness of the biomechanical model was exam-

ined by conducting a sensitivity analysis. This was under-

taken by calculating PTCF and PTCP values when

individually varying the two key input parameters KFA

and KEM from their minimum to maximum value. Sensi-

tivity index values were calculated in accordance with

Hamby (1994) and showed values for PTCF of 0.18 and

0.19 B.W and for PTCP of 0.15 and 0.19 MPa as a func-

tion of KFA and KEM scores, respectively.
Figure 1. Footwear used in thisD54 study: D55 (1) D56 cross-trainer, (2)D57
running shoe, and (3) D58 military boot.
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Statistical analysis

Differences in peak D72KEM, knee abduction moment,

PTCF, PTCP and PTCF loading rate between footwear

conditions were examined using one-way repeated meas-

ures ANOVAs. The alpha level required to denote statisti-

cal significance was adjusted to P � 0.01 using a

Bonferroni correction to control type I error. Post-hoc

pairwise comparisons were conducted on all significant

main effects. Effect sizes were calculated using partial

Eta2 (ph2). All statistical procedures were conducted

using SPSS 21.0 (SPSS Inc., Chicago, USA).

Results

Table 1 and Figure 2 present the patellofemoral kinetics

obtained as a function of footwear. The results indicate

that the experimental footwear significantly influenced

patellofemoral kinetics.

A significant main effect (F (2, 22) D 8.56, P < 0.01,

ph2 D 0.60) was observed for peak D81KEM. Post-hoc analy-

sis showed that D82KEM was significantly greater in the mili-

tary boot in comparison to the running shoe and cross-

trainer conditions (Table 1D83, Figure 2(a)). In addition, a sig-

nificant main effect (F (2, 22) D 11.49, P < 0.01, ph2 D
0.66) was observed for PTCF. Post-hoc analysis showed

that PTCF was significantly greater in the military boot in

comparison to the running shoe and cross-trainer conditions

(Table 1D84, Figure 2(c)). A significant main effect (F (2, 22) D
12.08, P < 0.01, ph2 D 0.67) was observed for PTCP.

Post-hoc analysis showed that PTCP was significantly

greater in the military boot in comparison to the running

shoe and cross-trainer conditions (Table 1D85, Figure 2(b)).

Finally, a significant main effect (F (2, 22) D 15.37, P <

0.01, ph2 D 0.72) was also observed for the magnitude of

knee abduction moment. Post-hoc analysis showed that the

peak abduction moment was significantly greater in the

running shoe condition compared to the cross-trainer and

military boot conditions (Table 1D86, Figure 2(d)).

Discussion

ThisD87 study aimed to determine whether running in three

different types of military footwear resulted in differential

levels of loading of the knee. To the authors’ knowledge,

this study represents the first investigation to examine the

influence of military footwear on the load experienced by

the knee joint during running, a common activity engaged

in during basic training.

In support of our hypothesis, the first key observation

from the current investigation is that PTCF and PTCP load

parameters were significantly greater when running in mili-

tary boots. This observation concurs with the observations

of Bonnaci et al. (2013) and Sinclair (2014), who also dem-

onstrated that different footwear conditions can influence

the magnitude of patellofemoral kinetics during running.

The observed increases in patellofemoral loads may have

clinical significance regarding the high incidence of patel-

lofemoral disorders in military recruits as the aetiology of

patellofemoral pain symptoms is considered to be linked to

excessive patellofemoral loading during running (Ho et al.,

2012; La Bella, 2004; Messier et al., 1991).

Table 1. Patellofemoral kinetics (Means § SD’s) as a function of footwear.

Military boot Cross-trainer Running trainer

Mean SD Mean SD Mean SD

Peak knee extensor moment (N D73¢m/kg) 3.11 0.09 3.02A 0.18 2.82A 0.18�

Patellofemoral contact force (B.W) 4.08 0.13 3.84A 0.14 3.59A 0.35�

Patellofemoral loading rate (B.W D74s¡1) 33.64 1.08 29.58A 1.17 27.62A 2.92�

Patellofemoral pressure (MPa) 11.53 0.93 11.13A 0.66 10.38A 1.34�

Peak knee abduction moment (N¢D75m/kg) 0.40B 0.16 0.37B 0.14 0.52 0.22�

� D sD76ignificant main effect.
A D significantly different from military boot.
B D significantly different from running trainer.

Figure 2. Knee kinetics and kinematics as a function of foot-
wear; D77 bD78lack D military boot, gD79rey D cross-trainer, dD80ash D run-
ning shoe (a D sagittal knee moment, b D PTCP, c D PTCF, d D
coronal knee moment) (EXT D extension and AB D abduction Q9).

4 J. Sinclair et al.
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The current investigation may therefore provide new

information regarding the selection of footwear with

which to reduce patellofemoral loading. Given the pro-

posed relationship between patellofemoral loading and

the aetiology of patellofemoral pain symptoms, the find-

ings from this work suggest that running in running shoe

and cross-trainers may be beneficial for those who are sus-

ceptible or have previously presented with patellofemoral

disorders. It is hypothesized that the increases in patellofe-

moral kinetics, demonstrated in the military boot, relates

to the comparatively reduced midsole cushioning associ-

ated with the military boot in relation to the running shoe

and cross-trainer (Sinclair & Taylor, 2014). When running

with reduced midsole cushioning, runners utilize

increased knee flexion throughout the stance phase (Lafor-

tune, Hennig, & LakeD88, 1996). Sinclair and Taylor (2014)

confirmed this observation as they showed that the mili-

tary boot was associated with a significantly increased

peak knee angle compared to the running shoe. Increases

in knee flexion are however associated with a shortening

of the patellofemoral joint moment arm, which leads to an

increase in the contact force between the patella and

femur (Ho et al., 2012).

A further important observation from this analysis is

that the running shoe condition was associated with

increased peak coronal plane internal abduction moment

in comparison to both the military boot and cross-trainer.

It is hypothesized that this observation related to distinct

coronal plane knee kinematics observed between foot-

wear. Indeed, Sinclair and Taylor (2014) confirmed that

knee coronal plane profiles were significantly influenced

as a function of different military specific footwear.

Although the magnitude change in internal knee abduc-

tion moment was relatively small, this observation may

also have clinical implications. Increases in internal knee

abduction moments have been shown to be associated

with augmented compartment loading of the medial

aspect of the knee joint (Zhao et al., 2007), and also impli-

cated into the development and progression of osteoarthri-

tis at the medial tibio-femoral articulation (Miyazaki

et al., 2002). In addition, it is postulated that increased

internal knee abduction moments may also enhance pro-

gressive degeneration at the knee joint, possibly contribut-

ing to the development of pathologies at the knee (Myer

et al., 2015; Sigward et al., 2012). Therefore, it appears

that although the running shoe condition is able to attenu-

ate sagittally dominated kinetics at the patellofemoral

joint, they may expose runners to additional medio-lat-

erally directed loads at the knee joint. This highlights the

clinical benefits of investigating joint moments in the cor-

onal and transverse planes.

Examination of the variability associated with each

footwear condition indicates that the data distribution

around the mean score for each parameter was much

lower in the traditional military boot. Sensory information

has been shown to be associated with alterations in move-

ment variability during locomotive movements (Dingwell

et al., 1999). Importantly, footwear midsole densities are

known to influence the amount of sensory information the

foot receives, (Lake & Lafortune, 1998), thus footwear

may be an important factor that determines the amount of

kinematic variability. It can be speculated based on these

observations that reduced midsole cushioning associated

with the military boot may be the mechanism by which

variability in this condition was reduced, although further

work is required to confirm this. This is nonetheless an

interesting avenue for further investigation in footwear

biomechanics literature, particularly as movement vari-

ability is considered to have a role in the aetiology of

chronic injury initiation (Hamill, Palmer, & Van

Emmerik, D89 2012).

A potential limitation to this work is that a predictive

technique was used to measure patellofemoral loading.

This was necessary, however, because of the impractical-

ity in obtaining invasive measurements of patellofemoral

kinetics. This technique has been used in other work to

effectively resolve differences in knee kinetics between

different footwear (Bonacci et al., 2013; Sinclair, 2014).

Nonetheless this procedure may lead to underestimation

of patellofemoral loads as the D90KEM was used as the key

input measurement and thus antagonist forces that act in

the opposing direction of the joint are not accounted for

(Kulmala, Avela, Pasanen, & Parkkari D91, 2013). In addition,

that participants were from a civilian population may also

serve as a limitation. Although the extent to which mili-

tary recruits differ in terms of their running mechanics

from civilian runners is not known, future research may

wish to further investigate the potential benefits of foot-

wear interventions in military recruits.

In conclusion, the observations of the current investi-

gation show that running in military boots significantly

increased PTFC and PTCP compared to running in the

running shoe and cross-trainer. Given the proposed rela-

tionship between joint loading and patellofemoral pathol-

ogy, the risk of the developing running related knee

injuries may be attenuated through utilization of the run-

ning shoe and cross-trainer conditions. However, taking

into account the small yet statistically significant increases

in peak knee abduction moment in the running shoe con-

dition, this in turn may increase the probability of chronic

injury development in relation to coronal plane knee

mechanics. On the basis of the findings from thisD92 study, it

is recommended that recruits who are susceptible to or

have previously presented with knee pain select the cross-

trainer for their running activities. Future work should

focus on prospective analyses regarding the effects of dif-

ferent footwear on the development of chronic patholo-

gies in military recruits and also the effects of different

knee loading mechanics on the aetiology of running

injuries.
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