12 research outputs found

    Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group

    Get PDF
    This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting

    Multiparametric MRI for Characterization of the Basal Ganglia and the Midbrain

    Get PDF
    Objectives To characterize subcortical nuclei by multi-parametric quantitative magnetic resonance imaging.Materials and Methods: The following quantitative multiparametric MR data of five healthy volunteers were acquired on a 7T MRI system: 3D gradient echo (GRE) data for the calculation of quantitative susceptibility maps (QSM), GRE sequences with and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR) calculation, a magnetization−prepared 2 rapid acquisition gradient echo sequence for T1 mapping, and (after a coil change) a density-adapted 3D radial pulse sequence for 23Na imaging. First, all data were co-registered to the GRE data, volumes of interest (VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each structure was conducted to assess the quantitative, MR value-based differentiability of structures. Second, a machine learning algorithm based on random forests was trained to automatically classify the groups of multi-parametric voxel values from each VOI according to their association to one of the 21 subcortical structures.Results The analysis of the integrated multimodal visualization of quantitative MR values in each structure yielded a successful classification among nuclei of the ascending reticular activation system (ARAS), the limbic system and the extrapyramidal system, while classification among (epi-)thalamic nuclei was less successful. The machine learning-based approach facilitated quantitative MR value-based structure classification especially in the group of extrapyramidal nuclei and reached an overall accuracy of 85% regarding all selected nuclei.Conclusion Multimodal quantitative MR enabled excellent differentiation of a wide spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive detection of disease and nucleus-specific MR-based contrast alterations in the future

    European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND).

    Get PDF
    INTRODUCTION: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION: The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration

    MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of Brain Veins From Gradient Echo Acquisitions

    No full text
    Cerebral vein analysis provides a chance to study, from an unusual viewpoint, an entire class of brain diseases, including neurodegenerative disorders and traumatic brain injuries. Manual segmentation approaches can be used to assess vascular anatomy, but they are observer-dependent and time-consuming; therefore, automated approaches are desirable, as they also improve reproducibility. In this paper, a new, fully automated algorithm, based on structural, morphological, and relaxometric information, is proposed to segment the entire cerebral venous system from MR images. The algorithm for multi-parametric automated segmentation of brain VEiNs (MAVEN) is based on a combined investigation of multi-parametric information that allows for rejection of false positives and detection of thin vessels. The method is tested on gradient echo brain data sets acquired at 1.5, 3, and 7 T. It is compared to previous methods against manual segmentation, and its inter-scan reproducibility is assessed. The achieved accuracy and reproducibility are good, meaning that MAVEN outperforms previous methods on both quantitative and qualitative analyses. It is usable at all the field strengths explored, showing comparable accuracy scores, with no need for algorithm parameter adjustments, and thus, it is a promising candidate for the characterization of the venous tree topology

    Mask-Adapted Background Field Removal for Artifact Reduction in Quantitative Susceptibility Mapping of the Prostate

    No full text
    We propose an alternative processing method for quantitative susceptibility mapping of the prostate that reduces artifacts and enables better visibility and quantification of calcifications and other lesions. Three-dimensional gradient-echo magnetic resonance data were obtained from 26 patients at 3 T who previously received a planning computed tomography of the prostate. Phase images were unwrapped using Laplacian-based phase unwrapping. The background field was removed with the V-SHARP method using tissue masks for the entire abdomen (Method 1) and masks that excluded bone and the rectum (Method 2). Susceptibility maps were calculated with the iLSQR method. The quality of susceptibility maps was assessed by one radiologist and two physicists who rated the data for visibility of lesions and data quality on a scale from 1 (poor) to 4 (good). The readers rated susceptibility maps computed with Method 2 to be, on average, better for visibility of lesions with a score of 2.9 ± 1.1 and image quality with a score of 2.8 ± 0.8 compared with maps computed with Method 1 (2.4 ± 1.2/2.3 ± 1.0). Regarding strong artifacts, these could be removed using adapted masks, and the susceptibility values seemed less biased by the artifacts. Thus, using an adapted mask for background field removal when calculating susceptibility maps of the prostate from phase data reduces artifacts and improves visibility of lesions

    Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro‐magnetic tissue properties study group

    No full text
    This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting

    The Traveling Heads 2.0: Multicenter Reproducibility of Quantitative Imaging Methods at 7 Tesla

    Get PDF
    ObjectThis study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging.Material and MethodsTwo subjects – termed the “traveling heads” – were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined.ResultsQuantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed.ConclusionOur results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain
    corecore