9 research outputs found

    Swallowing impairment in older adults : association with sensorimotor peripheral nerve function from the health, aging and body composition study

    Get PDF
    Background: The purpose of this study was to examine whether impairments in sensorimotor peripheral nerve function are associated with a higher likelihood of swallowing impairment in older adults. Methods: Health, Aging and Body Composition participants (n=607, age=75.8±2.7 years, 55.8% women, 32.3% black) underwent peripheral nerve testing at Year 4 and 11 with swallowing difculty assessed at Year 4 and 15. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with the vibration detection threshold and monoflament (1.4-g/10-g) testing at the big toe. Symptoms of lower extremity peripheral neuropathy and difculty swallowing were collected by self-report. Data analysis was performed using a hierarchical approach. Odds ratios (ORs) were estimated using non-conditional logistic regression. Results: At Year 15 108 (17.8%) participants had swallowing impairments. In fully adjusted models, the peripheral nerve impairments associated with swallowing impairment were numbness (OR 4.67; 95%CI 2.24–9.75) and poor motor nerve conduction velocity (OR 2.26; 95%CI 1.08–4.70). Other peripheral nerve impairments were not related to swallowing. Conclusions: The association between slow motor nerve conduction velocity and numbness and a higher likelihood of swal lowing difculties a decade later in our prospective study identifes an important area for further investigation in older adults

    A meta-analysis of previous falls and subsequent fracture risk in cohort studies

    Get PDF
    NC Harvey acknowledges funding from the UK Medical Research Council (MC_PC_21003; MC_PC_21001). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, and 75N92021D00005. Funding for the MrOS USA study comes from the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. Funding for the SOF study comes from the National Institute on Aging (NIA), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), supported by grants (AG05407, AR35582, AG05394, AR35584, and AR35583). Funding for the Health ABC study was from the Intramural research program at the National Institute on Aging under the following contract numbers: NO1-AG-6–2101, NO1-AG-6–2103, and NO1-AG-6–2106.Peer reviewedPostprin

    Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases

    No full text
    Resting metabolic rate (RMR) declines with aging and is related to changes in health status, but how specific health impairments impact basal metabolism over time has been largely unexplored. We analyzed the association of RMR with 15 common age-related chronic diseases for up to 13 years of follow-up in a population of 997 participants to the Baltimore Longitudinal Study of Aging. At each visit, participants underwent measurements of RMR by indirect calorimetry and body composition by DEXA. Linear regression models and linear mixed effect models were used to test cross-sectional and longitudinal associations of RMR and changes in disease status. Cancer and diabetes were associated with higher RMR at baseline. Independent of covariates, prevalent COPD and cancer, as well as incident diabetes, heart failure, and CKD were associated with a steeper decline in RMR over time. Chronic diseases seem to have a two-phase association with RMR. Initially, RMR may increase because of the high cost of resiliency homeostatic mechanisms. However, as the reserve capacity becomes exhausted, a catabolic cascade becomes unavoidable, resulting in loss of total and metabolically active mass and consequent RMR decline

    A saturated map of common genetic variants associated with human height

    No full text

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    A saturated map of common genetic variants associated with human height

    No full text
    corecore