2,556 research outputs found
Low-Density Lipoprotein Metabolism in the Normal to Moderately Elevated Range of Plasma-Cholesterol - Comparisons with Familial Hypercholesterolemia
z~2: An Epoch of Disk Assembly
We explore the evolution of the internal gas kinematics of star-forming
galaxies from the peak of cosmic star-formation at to today.
Measurements of galaxy rotation velocity , which quantify ordered
motions, and gas velocity dispersion , which quantify disordered
motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a
continuous baseline in redshift from to , spanning 10 Gyrs. At
low redshift, nearly all sufficiently massive star-forming galaxies are
rotationally supported (). By , the percentage of
galaxies with rotational support has declined to 50 at low stellar mass
() and 70 at high stellar mass
(). For , the percentage
drops below 35 for all masses. From to now, galaxies exhibit
remarkably smooth kinematic evolution on average. All galaxies tend towards
rotational support with time, and it is reached earlier in higher mass systems.
This is mostly due to an average decline in by a factor of 3 since a
redshift of 2, which is independent of mass. Over the same time period,
increases by a factor of 1.5 for low mass systems, but does not
evolve for high mass systems. These trends in and with
time are at a fixed stellar mass and should not be interpreted as evolutionary
tracks for galaxy populations. When galaxy populations are linked in time with
abundance matching, not only does decline with time as before, but
strongly increases with time for all galaxy masses. This enhances the
evolution in . These results indicate that is a
period of disk assembly, during which the strong rotational support present in
today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
The association of low birth weight with serum C reactive protein in three year old children living in Cuba: a population-based prospective study
The Maunakea Spectroscopic Explorer Book 2018
(Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is
intended as a concise reference guide to all aspects of the scientific and
technical design of MSE, for the international astronomy and engineering
communities, and related agencies. The current version is a status report of
MSE's science goals and their practical implementation, following the System
Conceptual Design Review, held in January 2018. MSE is a planned 10-m class,
wide-field, optical and near-infrared facility, designed to enable
transformative science, while filling a critical missing gap in the emerging
international network of large-scale astronomical facilities. MSE is completely
dedicated to multi-object spectroscopy of samples of between thousands and
millions of astrophysical objects. It will lead the world in this arena, due to
its unique design capabilities: it will boast a large (11.25 m) aperture and
wide (1.52 sq. degree) field of view; it will have the capabilities to observe
at a wide range of spectral resolutions, from R2500 to R40,000, with massive
multiplexing (4332 spectra per exposure, with all spectral resolutions
available at all times), and an on-target observing efficiency of more than
80%. MSE will unveil the composition and dynamics of the faint Universe and is
designed to excel at precision studies of faint astrophysical phenomena. It
will also provide critical follow-up for multi-wavelength imaging surveys, such
as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field
Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation
Very Large Array.Comment: 5 chapters, 160 pages, 107 figure
Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis
Background
Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy.
Methods
We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance.
Results
We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography.
Conclusion
Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data
Restriction and dependence to autonomy and freedom: Transformation in adolescent heart transplant recipients
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …
