46 research outputs found
Outcome of radiotherapy in T1 glottic carcinoma: A population-based study
We evaluated the radiation outcome and prognostic factors in a population-based study of early (T1N0M0) glottic carcinoma. Survival parameters and prognostic factors were evaluated by uni- and multivariate analysis in 316 consecutive irradiated patients with T1 glottic carcinoma in the Comprehensive Cancer Center West region of the western Netherlands. Median follow-up was 70 months (range 1-190 months). Five and ten-year local control was 86 and 84%. Disease specific survival was 97% at 5 and 10 years. In multivariate analysis, pre-existent laryngeal hypertrophic laryngitis was the only predictive factor for local control (relative risk = 3.0, P = 0.02). Comorbidity was prognostic for overall survival. No factor was predictive for disease specific survival. Pre-existent laryngeal hypertrophic laryngitis is a new risk factor associated with reduced local control in T1 glottic carcinoma treated with radiotherapy
Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types
Abstract
Background
A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability.
Results
We apply a novel analytical approach to measure and compare transcriptional and epigenetic variability genome-wide across CD14+CD16− monocytes, CD66b+CD16+ neutrophils, and CD4+CD45RA+ naïve T cells from the same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin regions and active enhancers.
Conclusions
Our data highlight the importance of transcriptional and epigenetic variability for the key role of neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into the plasticity of immune cells, which can be accessed from:
http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability
Both SEPT2 and MLL are down-regulated in MLL-SEPT2 therapy-related myeloid neoplasia
<p>Abstract</p> <p>Background</p> <p>A relevant role of septins in leukemogenesis has been uncovered by their involvement as fusion partners in <it>MLL</it>-related leukemia. Recently, we have established the <it>MLL-SEPT2 </it>gene fusion as the molecular abnormality subjacent to the translocation t(2;11)(q37;q23) in therapy-related acute myeloid leukemia. In this work we quantified <it>MLL </it>and <it>SEPT2 </it>gene expression in 58 acute myeloid leukemia patients selected to represent the major AML genetic subgroups, as well as in all three cases of <it>MLL-SEPT2</it>-associated myeloid neoplasms so far described in the literature.</p> <p>Methods</p> <p>Cytogenetics, fluorescence in situ hybridization (FISH) and molecular studies (RT-PCR, qRT-PCR and qMSP) were used to characterize 58 acute myeloid leukemia patients (AML) at diagnosis selected to represent the major AML genetic subgroups: <it>CBFB-MYH11 </it>(n = 13), <it>PML-RARA </it>(n = 12); <it>RUNX1-RUNX1T1 </it>(n = 12), normal karyotype (n = 11), and <it>MLL </it>gene fusions other than <it>MLL-SEPT2 </it>(n = 10). We also studied all three <it>MLL-SEPT2 </it>myeloid neoplasia cases reported in the literature, namely two AML patients and a t-MDS patient.</p> <p>Results</p> <p>When compared with normal controls, we found a 12.8-fold reduction of wild-type <it>SEPT2 </it>and <it>MLL-SEPT2 </it>combined expression in cases with the <it>MLL-SEPT2 </it>gene fusion (p = 0.007), which is accompanied by a 12.4-fold down-regulation of wild-type <it>MLL </it>and <it>MLL-SEPT2 </it>combined expression (p = 0.028). The down-regulation of <it>SEPT2 </it>in <it>MLL-SEPT2 </it>myeloid neoplasias was statistically significant when compared with all other leukemia genetic subgroups (including those with other <it>MLL </it>gene fusions). In addition, <it>MLL </it>expression was also down-regulated in the group of <it>MLL </it>fusions other than <it>MLL-SEPT2</it>, when compared with the normal control group (p = 0.023)</p> <p>Conclusion</p> <p>We found a significant down-regulation of both <it>SEPT2 </it>and <it>MLL </it>in <it>MLL-SEPT2 </it>myeloid neoplasias. In addition, we also found that <it>MLL </it>is under-expressed in AML patients with <it>MLL </it>fusions other than <it>MLL-SEPT2</it>.</p
Challenging Conventional Diagnostic Methods by Comprehensive Molecular Diagnostics: A Nationwide Prospective Comparison in Children With ALL
PURPOSE Treatment stratification in ALL includes diverse (cyto)genetic aberrations, requiring diverse tests to yield conclusive data. We optimized the diagnostic workflow to detect all relevant aberrations with a limited number of tests in a clinically relevant time frame. METHODS In 467 consecutive patients with ALL (0-20 years), we compared RNA sequencing (RNAseq), fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), karyotyping, single-nucleotide polymorphism (SNP) array, and multiplex ligation-dependent probe amplification (MLPA) for technical success, concordance of results, and turnaround time. RESULTS To detect stratifying fusions (ETV6::RUNX1, BCR::ABL1, ABL-class, KMT2Ar, TCF3::HLF, IGH::MYC), RNAseq and FISH were conclusive for 97% and 96% of patients, respectively, with 99% concordance. RNAseq performed well in samples with a low leukemic cell percentage or low RNA quality. RT-PCR for six specific fusions was conclusive for >99% but false-negative for six patients with alternatively fused exons. RNAseq also detected gene fusions not yet used for stratification in 14% of B-cell precursor-ALL and 33% of T-ALL. For aneuploidies and intrachromosomal amplification of chromosome 21, SNP array gave a conclusive result in 99%, thereby outperforming karyotyping, which was conclusive for 64%. To identify deletions in eight stratifying genes/regions, SNP array was conclusive in 99% and MLPA in 95% of patients, with 98% concordance. The median turnaround times were 10 days for RNAseq, 9 days for FISH, 10 days for SNP array, and <7 days for MLPA and RT-PCR in this real-world prospective study. CONCLUSION Combining RNAseq and SNP array outperformed current diagnostic tools to detect all stratifying genetic aberrations in ALL. The turnaround time is <15 days matching major treatment decision time points. Moreover, combining RNAseq and SNP array has the advantage of detecting new lesions for studies on prognosis and pathobiology
Simultaneous analysis of large-scale RNAi screens for pathogen entry
Large-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors. We propose a Parallel Mixed Model (PMM) approach that simultaneously analyzes several non-identical screens performed with the same RNAi libraries.; We show that PMM gains statistical power for hit detection due to parallel screening. PMM allows incorporating siRNA weights that can be assigned according to available information on RNAi quality. Moreover, PMM is able to estimate a sharedness score that can be used to focus follow-up efforts on generic or specific gene regulators. By fitting a PMM model to our data, we found several novel hit genes for most of the pathogens studied.; Our results show parallel RNAi screening can improve the results of individual screens. This is currently particularly interesting when large-scale parallel datasets are becoming more and more publicly available. Our comprehensive siRNA dataset provides a public, freely available resource for further statistical and biological analyses in the high-content, high-throughput siRNA screening field
Translocation (2;11)(q37;q23) in therapy-related myelodysplastic syndrome after treatment for acute promyelocytic leukemia
Treatment of acute promyelocytic leukemia (APL) with a combination of anthracycline-based chemotherapy and all-trans retinoic acid (ATRA) leads to very high rates of complete remission and survival. There are only a limited number of publications on the development of therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia during follow-up of APL. Although drugs targeting at DNA-topoisomerase II characteristically induce translocations involving 11q23, this was seldom seen in patients treated for APL. We report on a patient initially diagnosed with APL. Response to therapy was monitored by fluorescence in situ hybridization (FISH) and reverse-transcriptase polymerase chain reaction for the PML-RARalpha rearrangement. Consecutive samples showed a swift and complete reduction of PML-RARalpha rearranged cells. Twenty months after diagnosis, however, conventional cytogenetics revealed a complex karyotype with a translocation involving 11q23 and loss of chromosomes 7q and Xq. FISH analysis with the MLL probe identified 2q37 (harboring the SEPT2 gene) as the translocation partner of chromosome 11. We consider the rather unique t(2;11)(q37;q23) as the primary event causing therapy-related MDS in our patient. This case stresses the importance of conventional karyotyping to be performed on a regular basis in all treated APL patients for the early detection of chromosomal aberrations that indicate the development of therapy-related MDS or acute myeloid leukemi
Reappraising Migration on the EU-Turkey Agenda
Objective: To investigate the influence of previous tumours on overall survival in patients with early glottic carcinoma. Design: Retrospective, population-based cohort study. Setting: Cancer registration area in the west Netherlands. Methods: Population-based data on previous and subsequent tumours in patients diagnosed with early glottic carcinom
Structural genome variations in individuals with childhood cancer and tumour predisposition syndromes
Previous studies have shown a high prevalence of syndromes in children with cancer. We described four patterns of co-occurring morphological abnormalities indicating new tumour predisposition syndromes. These patterns were named after their key-abnormalities: blepharophimosis (BP), epicanthal folds (EF), asymmetric lower limbs (LLA) and Sydney creases (SC) pattern. The purpose of our study was to identify structural genomic variants possibly involved in these tumour predisposition syndromes. In 49 probands (13 from BP, nine from EF, 20 from LLA and seven from SC patterns respectively) karyotyping was performed. Copy number variation (CNV) in genomic DNA of the probands was analysed to detect microdeletions/-duplications using SNP array. FISH and quantitative-polymerase chain reaction (q-PCR) experiments were done to validate events identified by cytogenetic and CNV analysis. Cytogenetic analysis showed an inherited inversion of chromosome 15, inv(15) (q25q26) in a proband with LLA-pattern. Evaluation of the genes at the breakpoints made it unlikely that these explained the phenotype and tumour in this patient. Eleven CNV events met our inclusion criteria; three inherited CNV events involved an oncogene. A duplication involving BCL9 was identified in a proband diagnosed with Burkitt lymphoma. A duplication involving PCM1 was identified in a proband diagnosed with pre-B-ALL. Both probands showed the EF-pattern of morphological abnormalities. A deletion involving TRA@ was identified in two probands from the BP-pattern diagnosed with rhabdomyosarcoma and pre-B-ALL respectively. We report on structural genomic variants in paediatric cancer patients with newly recognised tumour predisposition syndromes. We identify three CNV events which we suggest to be susceptibility loc
