9 research outputs found

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 11

    Get PDF
    In this contribution, new data concerning bryophytes, fungi, and lichens of the Italian flora are presented. It includes new records and confirmations for the bryophyte genera Aneura, Aulacomnium, Dumortiera, Fossombronia, Hennediella, Hygrohypnella, Pohlia, Porella, Riccardia, Tortella, and Tortula, the fungal genera Cortinarius, Mycena, Naucoria, Trichoglossum, and Tubaria and the lichen genera Agonimia, Blastenia, Chaenotheca, Cladonia, Endocarpon, Gyalecta, Lecanographa, Parmeliella, Porpidia, Stenhammarella, and Thelidium

    γδ T cell responses: How many ligands will it take till we know?

    Get PDF
    γδ T cells constitute a sizeable and non-redundant fraction of the total T cell pool in all jawed vertebrates, but in contrast to conventional αβ T cells they are not restricted by classical MHC molecules. Progress in our understanding of the role of γδ T cells in the immune system has been hampered, and is being hampered, by the considerable lack of knowledge regarding the antigens γδ T cells respond to. The past few years have seen a wealth of data regarding the TCR repertoires of distinct γδ T cell populations and a growing list of confirmed and proposed molecules that are recognised by γδ T cells in different species. Yet, the physiological contexts underlying the often restricted TCR usage and the chemical diversity of γδ T cell ligands remain largely unclear, and only few structural studies have confirmed direct ligand recognition by the TCR. We here review the latest progress in the identification and validation of putative γδ T cell ligands and discuss the implications of such findings for γδ T cell responses in health and disease

    Phenotypic correlates of genetic divergence suggest at least three species in the complex of Dianthus virgineus (Caryophyllaceae)

    No full text
    Dianthus virgineus encompasses a very complex taxonomic group (traditionally called D. sylvestris group) including an array of units of doubtful taxonomic rank and value. Recent work identified three genetic lineages within this complex that showed strong genetic isolation, and clear geographical boundaries (i.e., "Alpine", "Balkan", and "Apennine" lineages). We evaluated the contribution of 33 morphological characters in differentiating such genetic units, by also investigating the effect of geographical and ecological drivers on the characters showing major discriminating power. The morphological measures were taken from a large number of populations (N = 97) included in the sample used for detecting the three genetic lineages. Our work reveals that these lineages can be morphologically discriminated by a series of character-states that are traditionally considered of relevant taxonomical value. We also inferred a significant geographical and ecological effect on most characters, which varied gradually with latitude, longitude, and mean annual temperature. Overall, our data suggest that the three biological units can be referred to D. inodorus (L.) Gaertn. ("Alpine" lineage), D. sylvestris Wulfen ("Balkan" lineage), and D. virgineus L. s.str. ("Apennine" lineage). We also provide an identification key to discriminate these three taxa.ISSN:0040-026

    Do marginal plant populations enhance the fitness of larger core units under ongoing climate change? Empirical insights from a rare carnation

    No full text
    Assisted gene flow (AGF) can restore fitness in small plant populations. Due to climate change, current fitness patterns could vary in the future ecological scenario, as highly performant lineages can undergo maladaptation under the new climatic contexts. Peripheral populations have been argued to represent a potential source of species adaptation against climate change, but experimental evidence is poor. This paper considers the consequences of within- and between-population mating between a large core population and the southernmost population, the rare Dianthus guliae, to evaluate optimal AGF design under current and future conditions. We performed experimental self-pollinations and within- and between-population cross-pollinations to generate seed material and test its adaptive value to aridity. Seed germination, seedling growth and survival were measured under current and expected aridity. Effects of population type, pollination treatment and stress treatment on fitness components were analysed by generalized linear models. Relative measures of inbreeding depression and heterosis were taken under different stress treatments. Self-pollination reduced fitness for all the considered traits compared to within- and between-population cross-pollination. Under current aridity regime, the core population expressed higher fitness, and a larger magnitude of inbreeding depression. This indicated the core unit is close to its fitness optimum and could allow for restoring the fitness of the small peripheral population. Contrarily, under increased aridity, the fitness of outbred core lineages decreased, suggesting the rise of maladaptation. In this scenario, AGF from the small peripheral population enhanced the fitness of the core unit, whereas AGF from the core population promoted a fitness loss in the peripheral population. Hence, the small peripheral population could improve fitness of large core units versus climate change, while the contrary could be not true. Integrating reciprocal breeding programmes and fitness analyses under current and predicted ecological conditions can support optimal AGF design in a long-term perspective.The environmental variations due to ongoing climate change can reduce the reproductive success of species and populations that currently show a good conservation status. Through experiments of assisted gene flow between a small peripheral population and a large core population of a rare carnation, this paper evidences that small populations isolated at the margin of the species range can improve the reproductive success of larger demographic units under climate change. Such findings highlight the importance of preserving small peripheral populations as they can enhance the species evolutionary potential versus climate change

    Salvia officinalis L. from Italy: A Comparative Chemical and Biological Study of Its Essential Oil in the Mediterranean Context

    No full text
    Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL)

    Essential Oils and Extracts of Juniperus macrocarpa Sm. and Juniperus oxycedrus L.: Comparative Phytochemical Composition and Anti-Proliferative and Antioxidant Activities

    No full text
    In this work, we conducted a comparative phytochemical, chemotaxonomic, and biological study of essential oils (EOs) and extracts (ethyl acetate and methanol) obtained from the leaves of Juniperusmacrocarpa and J. oxycedrus. The dominant compounds of J. macrocarpa EO, analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), are α-pinene, sabinene, manoyl oxide, and germacrene D, whereas α-pinene, limonene, (Z,E)-farnesol, β-pinene, and γ-cadinene are the most representative volatiles of J. oxycedrus EOs. A multivariate analysis of EOs, included a selection of literature data comparing our samples to samples of J. oxycedrus/macrocarpa/deltoides from the Mediterranean area, was performed. As evident by high-performance liquid chromatography (HPLC) analyses, apigenin, (−)-epicatechin, and luteolin were abundant in J. oxycedrus extracts, while gallic acid, kaempferol-3-O-glucoside, and protocatechuic acid were the dominant constituents of J. macrocarpa extracts. EOs and extracts have been investigated for their potential antioxidant properties and anti-proliferative activity against lung adenocarcinoma (A549), breast cancer (MCF-7 and MDA-MB-231), and lung large cell carcinoma (COR-L23) human cell lines. The methanol and ethyl acetate extracts of J. oxycedrus exerted the most valuable antioxidant activity and exhibited the most promising activity against the COR-L23 cell line with an IC50 of 26.0 and 39.1 μg/mL, respectively, lower than that obtained with the positive control (IC50 of 45.5 μg/mL). To the best of our knowledge, this is the first report highlighting the anti-proliferative activity of J. oxycedrus and J. macrocarpa extracts against this lung cancer cell line. Our results indicate that J. oxycedrus may be considered a source of natural compounds with antioxidant and anti-proliferative effects that could be suitable for future applications

    Essential Oils and Extracts of <i>Juniperus macrocarpa</i> Sm. and <i>Juniperus oxycedrus</i> L.: Comparative Phytochemical Composition and Anti-Proliferative and Antioxidant Activities

    No full text
    In this work, we conducted a comparative phytochemical, chemotaxonomic, and biological study of essential oils (EOs) and extracts (ethyl acetate and methanol) obtained from the leaves of Juniperusmacrocarpa and J. oxycedrus. The dominant compounds of J. macrocarpa EO, analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), are α-pinene, sabinene, manoyl oxide, and germacrene D, whereas α-pinene, limonene, (Z,E)-farnesol, β-pinene, and γ-cadinene are the most representative volatiles of J. oxycedrus EOs. A multivariate analysis of EOs, included a selection of literature data comparing our samples to samples of J. oxycedrus/macrocarpa/deltoides from the Mediterranean area, was performed. As evident by high-performance liquid chromatography (HPLC) analyses, apigenin, (−)-epicatechin, and luteolin were abundant in J. oxycedrus extracts, while gallic acid, kaempferol-3-O-glucoside, and protocatechuic acid were the dominant constituents of J. macrocarpa extracts. EOs and extracts have been investigated for their potential antioxidant properties and anti-proliferative activity against lung adenocarcinoma (A549), breast cancer (MCF-7 and MDA-MB-231), and lung large cell carcinoma (COR-L23) human cell lines. The methanol and ethyl acetate extracts of J. oxycedrus exerted the most valuable antioxidant activity and exhibited the most promising activity against the COR-L23 cell line with an IC50 of 26.0 and 39.1 μg/mL, respectively, lower than that obtained with the positive control (IC50 of 45.5 μg/mL). To the best of our knowledge, this is the first report highlighting the anti-proliferative activity of J. oxycedrus and J. macrocarpa extracts against this lung cancer cell line. Our results indicate that J. oxycedrus may be considered a source of natural compounds with antioxidant and anti-proliferative effects that could be suitable for future applications
    corecore