836 research outputs found

    Dynamical and chemical evolution of gas-rich dwarf galaxies

    Full text link
    We study the effect of a single, instantaneous starburst on the dynamical and chemical evolution of a gas-rich dwarf galaxy, whose potential well is dominated by a dark matter halo. We follow the dynamical and chemical evolution of the ISM by means of an improved 2-D hydrodynamical code coupled with detailed chemical yields originating from type II SNe, type Ia SNe and single low and intermediate mass stars (IMS). In particular we follow the evolution of the abundances of H, He, C, N, O, Mg, Si and Fe. We find that for a galaxy resembling IZw18, a galactic wind develops as a consequence of the starburst and it carries out of the galaxy mostly the metal-enriched gas. In addition, we find that different metals are lost differentially in the sense that the elements produced by type Ia SNe are more efficiently lost than others. As a consequence of that we predict larger [α\alpha/Fe] ratios for the gas inside the galaxy than for the gas leaving the galaxy. A comparison of our predicted abundances of C, N, O and Si in the case of a burst occurring in a primordial gas shows a very good agreement with the observed abundances in IZw18 as long as the burst has an age of 31\sim 31 Myr and IMS produce some primary nitrogen. However, we cannot exclude that a previous burst of star formation had occurred in IZw18 especially if the preenrichment produced by the older burst was lower than Z=0.01Z=0.01 Z_{\odot}. Finally, at variance with previous studies, we find that most of the metals reside in the cold gas phase already after few Myr. This result is mainly due to the assumed low SNII heating efficiency, and justifies the generally adopted homogeneous and instantaneous mixing of gas in chemical evolution models.Comment: 25 pages, Latex, 18 figures, accepted for publication in MNRA

    A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    Get PDF
    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network

    Screen Time and Sleep of Rural and Urban South African Preschool Children

    Get PDF
    This study aimed to investigate the extent to which preschool children meet guidelines for screen time (< 1 h/day) and sleep (10–13 h/24-h) and explored home factors that affect these behaviors. Parents of preschoolers across income settings in South Africa (urban high-income n = 27, urban low-income n = 96 and rural low-income n = 142) completed a questionnaire. Urban high-income children had higher rates of exceeding screen time guidelines (67.0%) than children from urban low-income (26.0%) and rural low-income (3.5%) settings. Most children (81.0%) met sleep guidelines on weekdays and on weekends (75.0%). More urban high-income children met the sleep guideline, in comparison to both low-income settings. Fewer urban high-income parents (50.0%) thought that screen time would not affect their preschooler’s health, compared to urban low-income (90.4%) and rural low-income (81.7%) parents. Weeknight bedtime was positively correlated with both weekday screen time (p = 0.001) and weekday TV time (p = 0.005), indicating that more time on screens correlated with later bedtimes. Meeting screen time and sleep guidelines differs across income settings, but it is evident that parents of preschoolers across all income settings would benefit from greater awareness about guidelines

    Sleep and BMI in South African urban and rural, high and low-income preschool children

    Get PDF
    Abstract Background The extent to which income setting or rural and urban environments modify the association between sleep and obesity in young children is unclear. The aims of this cross-sectional observational study were to (i) describe and compare sleep in South African preschool children from rural low-income (RL), urban low-income (UL) and urban high-income (UH) settings; and (ii) test for associations between sleep parameters and body mass index (BMI). Methods Participants were preschoolers (5.2 ± 0.7y, 49.5% boys) from RL (n = 111), UL (n = 65) and UH (n = 22) settings. Height and weight were measured. Sleep, sedentary behaviour and physical activity were assessed using accelerometery. Results UL children had higher BMI z-scores (median: 0.39; interquartile range: − 0.27, 0.99) than the UH (− 0.38; − 0.88, 0.11) and RL (− 0.08; − 0.83, 0.53) children (p = 0.001). The UL children had later bedtimes (p < 0.001) and wake-up times (p < 0.001) and shorter 24 h (p < 0.001) and nocturnal (p < 0.001) sleep durations than the RL and UH children. After adjusting for age, sex, setting, SB and PA, for every hour less sleep obtained (24 h and nocturnal), children were 2.28 (95% CI: 1.28–4.35) and 2.22 (95% CI: 1.27–3.85) more likely, respectively, to belong to a higher BMI z-score quartile. Conclusions Shorter sleep is associated with a higher BMI z-score in South African preschoolers, despite high levels of PA, with UL children appearing to be particularly vulnerable

    Self-Reported Physical Activity in Middle-Aged and Older Adults in Rural South Africa: Levels and Correlates

    Get PDF
    Little is known about physical activity (PA) levels and correlates in adults from rural settings in South Africa, where a rapid increase in the number of older people and marked disparities in wealth are evident, particularly between those living in rural and urban areas. This paper describes levels of self-reported PA in rural South African men and women and examines factors associated with meeting PA guidelines. Global Physical Activity Questionnaire (GPAQ) data from the Health and Aging in Africa: Longitudinal studies of INDEPTH communities (HAALSI) survey of 5059 adults aged over 40 years were assessed. Logistic regression analyses were used to assess socio-demographic, functional and cognitive capacity, and chronic disease measures associated with PA. In addition, 75.4% (n = 3421) of the participants with valid GPAQ data (n = 4538 of 5059) met the PA guidelines. Factors associated with not the meeting PA guidelines were being male, over the age of 80 years, being in a higher wealth category, obesity, and poorer functional capacity. These findings highlight worthwhile targets for future interventions to maintain or improve PA levels in this population and suggest that intervening earlier within this age range (from 40 years) may be crucial to prevent the ‘spiral of decline’ that characterizes the frailty syndrome

    Neuroanatomical abnormalities in first-episode psychosis across independent samples: a multi-centre mega-analysis

    Get PDF
    Abstract Background Neuroanatomical abnormalities in first-episode psychosis (FEP) tend to be subtle and widespread. The vast majority of previous studies have used small samples, and therefore may have been underpowered. In addition, most studies have examined participants at a single research site, and therefore the results may be specific to the local sample investigated. Consequently, the findings reported in the existing literature are highly heterogeneous. This study aimed to overcome these issues by testing for neuroanatomical abnormalities in individuals with FEP that are expressed consistently across several independent samples. Methods Structural Magnetic Resonance Imaging data were acquired from a total of 572 FEP and 502 age and gender comparable healthy controls at five sites. Voxel-based morphometry was used to investigate differences in grey matter volume (GMV) between the two groups. Statistical inferences were made at p < 0.05 after family-wise error correction for multiple comparisons. Results FEP showed a widespread pattern of decreased GMV in fronto-temporal, insular and occipital regions bilaterally; these decreases were not dependent on anti-psychotic medication. The region with the most pronounced decrease – gyrus rectus – was negatively correlated with the severity of positive and negative symptoms. Conclusions This study identified a consistent pattern of fronto-temporal, insular and occipital abnormalities in five independent FEP samples; furthermore, the extent of these alterations is dependent on the severity of symptoms and duration of illness. This provides evidence for reliable neuroanatomical alternations in FEP, expressed above and beyond site-related differences in anti-psychotic medication, scanning parameters and recruitment criteria

    Dynamic changes in prefrontal cortex involvement during verbal episodic memory formation

    Get PDF
    During encoding, the neural activity immediately before or during an event can predict whether that event will be later remembered. The contribution of brain activity immediately after an event to memory formation is however less known. Here, we used repetitive Transcranial Magnetic Stimulation (rTMS) to investigate the temporal dynamics of episodic memory encoding with a focus on post-stimulus time intervals. At encoding, rTMS was applied during the online processing of the word, at its offset, or 100, 200, 300 or 400 ms thereafter. rTMS was delivered to the left ventrolateral (VLPFC) or dorsolateral prefrontal cortex (DLPFC). VLPFC rTMS during the first few hundreds of milliseconds after word offset disrupted subsequent recognition accuracy. We did not observe effects of DLPFC rTMS at any time point. These results suggest that encoding-related VLPFC engagement starts at a relatively late processing stage, and may reflect brain processes related to the offset of the stimulus
    corecore