62 research outputs found

    Steam Explosion Conditions Highly Influence the Biogas Yield of Rice Straw

    Get PDF
    Straws are agricultural residues that can be used to produce biomethane by anaerobic digestion. The methane yield of rice straw is lower than other straws. Steam explosion was investigated as a pretreatment to increase methane production. Pretreatment conditions with varying reaction times (12–30 min) and maximum temperatures (162–240 °C) were applied. The pretreated material was characterized for its composition and thermal and morphological properties. When the steam explosion was performed with a moderate severity parameter of S0 = 4.1 min, the methane yield was increased by 32% compared to untreated rice straw. This study shows that a harsher pretreatment at S0 > 4.3 min causes a drastic reduction of methane yield because inert condensation products are formed from hemicellulose

    Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies

    Get PDF
    The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B- cell lymphomas, the tumor cells express a tumor-speci ïŹ c and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-speci ïŹ c binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identi ïŹ ed, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in ïŹ‚ uorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed speci ïŹ c binding to the parental SUP-B8 cell line con ïŹ rming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a signi ïŹ cant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable speci ïŹ c killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy

    Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion

    Get PDF
    The effect of organic loading rate (OLR) on a pressurized anaerobic filter was studied in a laboratory two-phase anaerobic digestion system. The anaerobic filter was operated successively at two working pressures (9 bar and 1.5 bar). The OLR(COD) for each pressure was increased from 5 to 17.5 kg·m−3·day−1. The best performance of the reactor at 9 bar was observed at OLR(COD) of 12.5 kg·m−3·day−1 and hydraulic retention time (HRT) of 1.8 day, with specific biogas productivity (SBP) of 5.3 L·L−1·day−1 and COD degradation grade of 90.6%. At higher OLRs and shorter HRTs, the process became unstable. In contrast, there was no indication of digester failure during the experiments at 1.5 bar. The SBP peaked at OLR(COD) of 17.5 kg·m−3·day−1 with 8.2 L·L−1·day−1, where COD degradation grade was 90.4%. The biogas collected from the reactor at 9 bar and 1.5 bar contained approximately 74.5% CH4 and 66.2% CH4, respectively, regardless of OLR variation. At OLR(COD) of 5–12.5 kg·m−3·day−1, the reactor at 9 bar had the same specific methane yield as at 1.5 bar, which was in the range of 0.31–0.32 LN·g−1COD. Raising the working pressure in the reactor resulted in an increase of methane content of the produced biogas. However, the low pH value (approximately 6.5) inside the reactor, induced by high CO2 partial pressure seemed to limit the reactor performance at high OLRs and short HRT

    Management practices, and not surrounding habitats, drive bird and arthropod biodiversity within vineyards

    Get PDF
    Agrochemical use and habitat loss associated with agriculture are drivers of biodiversity loss worldwide, and biodiversity-friendly farming practices, including organic management, are increasingly promoted by policy and industry in an attempt to offset this. Grapes are an important perennial crop globally, and in the UK, viticulture is the fastest growing agricultural sector and sustainable vineyard management is promoted by the Sustainable Wines of Great Britain ‘SWGB’ scheme. Here, we performed the first assessment of the simultaneous effects of surrounding habitats and vineyard management practices on bird and arthropod biodiversity across 22 English vineyards (10 certified-organic, 11 SWGB-accredited, and 3 both). We surveyed birds using point counts and arthropods with pitfall traps, and used linear mixed modelling to relate diversity and abundance to habitat and management predictors at landscape and local scales. We show that arthropod abundance is significantly higher on organic vineyards, whilst bird diversity is significantly lower on SWGB-accredited vineyards, but we find no other significant effects of organic certification or SWGB-accreditation on biodiversity. We also find no significant effects of the surrounding habitat structure on the biodiversity of birds and arthropods. Instead, we show that ecotoxicity scores derived from agrochemical use data have a significant negative impact on bird diversity, and on arthropod abundance and diversity. Organic status predicts a significant reduction in ecotoxicity scores, but only when application frequency is not considered, and contradictorily, SWGB-accredited vineyards have higher ecotoxicity scores than those without accreditation. Ground vegetation cover has a consistent, positive effect on bird and arthropod diversity, with model predicted diversity increasing 1.5 and 2.5-fold, respectively, in vineyards with the highest vegetation cover, and herbicide use has a negative effect on the vegetation cover. Our research demonstrates that individual management practices have a stronger effect on vineyard biodiversity than the habitat context, overall management regime or certification. Our study sets an important baseline for vineyard management and accreditation schemes and generates key recommendations for improvement. To benefit biodiversity within vineyards, we recommend that sustainability accreditation schemes include requirements to reduce the ecotoxicity of used agrochemicals, and promote higher ground vegetation cover and height by reducing herbicide use

    Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of ‘Almost Natural’ Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection

    Get PDF
    A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. Interestingly, this type of immunoglobulin usually pairs with the single germline VL gene, V30 that is typically very conserved in sequence. In this work, we have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. After selection, EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. Biochemical characterization of resulting bispecifics revealed highly specific binding to the respective antigens as well as simultaneous binding to both targets. Most importantly, engineered cattle-derived bispecific common light chain molecules elicited potent NK cell redirection and consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of proinflammatory cytokine interferon-Îł. Taken together, this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications

    Expert Views on the Future Development of Biogas Business Branch in Germany, The Netherlands, and Finland until 2030

    Get PDF
    To be able to meet the European Union’s energy and climate targets for 2030, all member states need to rethink their energy production and use. One potential renewable energy source is biogas. Its role has been relatively small compared to other energy sources, but it could have a more central role to solve some specific challenges, e.g., to reduce carbon dioxide (CO2) emissions from traffic, or to act as a buffer to balance electricity production with consumption. This research analyses how the future of the biogas business in three case study countries is developing until 2030. The study is based on experts’ views within the biogas business branch in Germany, The Netherlands, and Finland. Both similarities and differences were found among the experts’ answers, which reflected also the current policies in different countries. The role of biogas was seen much wider than just to provide renewable energy, but also to decrease emissions from agriculture and close loops in a circular economy. However, the future of the biogas branch is much dependent on political decisions. To be able to show the full potential of biogas technology for society, stable and predictable energy policy and cross-sector co-operation are needed

    AI/ML combined with next-generation sequencing of VHH immune repertoires enables the rapid identification of de novo humanized and sequence-optimized single domain antibodies: a prospective case study

    Get PDF
    Introduction: In this study, we demonstrate the feasibility of yeast surface display (YSD) and nextgeneration sequencing (NGS) in combination with artificial intelligence and machine learning methods (AI/ML) for the identification of de novo humanized single domain antibodies (sdAbs) with favorable early developability profiles.Methods: The display library was derived from a novel approach, in which VHH-based CDR3 regions obtained from a llama (Lama glama), immunized against NKp46, were grafted onto a humanized VHH backbone library that was diversified in CDR1 and CDR2. Following NGS analysis of sequence pools from two rounds of fluorescence-activated cell sorting we focused on four sequence clusters based on NGS frequency and enrichment analysis as well as in silico developability assessment. For each cluster, long short-term memory (LSTM) based deep generative models were trained and used for the in silico sampling of new sequences. Sequences were subjected to sequence- and structure-based in silico developability assessment to select a set of less than 10 sequences per cluster for production.Results: As demonstrated by binding kinetics and early developability assessment, this procedure represents a general strategy for the rapid and efficient design of potent and automatically humanized sdAb hits from screening selections with favorable early developability profiles

    Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies

    Get PDF
    The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B-cell lymphomas, the tumor cells express a tumor-specific and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-specific binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identified, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fluorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed specific binding to the parental SUP-B8 cell line confirming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a significant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable specific killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy

    Grand challenges in entomology: priorities for action in the coming decades

    Get PDF
    1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. 2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). 3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. 4. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). 5. Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. 6. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change
    • 

    corecore