764 research outputs found

    Geothermal heat pump system operational data: high frequency monitoring of a large university building

    Get PDF
    This data was collected as part of a PhD project to analyze the performance of a large-scale non-domestic heat pump installation. The building in question was the Hugh Aston building at De Montfort University, Leicester, UK. High frequency data have been collected during the initial three years of operation of the system. This data has been collated to allow seasonal performance factors to be derived and also detailed analysis of heat pump, circulating pump and control system operation. The data set includes minutely ground loop and heating/cooling loop fluid temperatures and flow rates. The data set has been used to validate models and design procedures for vertical borehole ground heat exchanger arrays

    Layer guided-acoustic plate mode biosensors for monitoring MHC-peptide interactions

    Get PDF
    The transduction signals from the immobilisation of a class I heavy chain, HLA-A2, on a layer guided acoustic plate mode device, followed by binding of beta(2)-microglobulin and subsequent selective binding of a target peptide are reported

    Magnetic resonance volume flow and jet velocity mapping in aortic coarctation

    Get PDF
    AbstractObjectives. Nuclear magnetic resonance (MRI) velocity mapping was used to characterize flow waveforms and to measure volume flow in the ascending and descending thoracic aorta in patients with aortic coarctation and in healthy volunteers. We present the method and discuss the relation between these measurements and aortic narrowing assessed by MRI. Finally, we compare coarctation jet velocity measured by MRI velocity mapping with that obtained from continuous wave Doppler echocardiography.Background. The development of a noninvasive imaging method for morphologic visuslization of aortic coarctation and for measurement of its impact on blood flow is highly desirable in the preoperative and postoperative management of patients.Methods. Magnetic resonance imaging phase-shift velocity mapping was used to measure ascending and descending aortic volume flow in 39 patients with aortic coarctation and in 12 healthy volunteers. Magnetic resonance imaging was also used for anatomic and peak jet velocity measurements. The latter were compared with those available from continuous wave Doppler study in 40% of the patients.Results. Whereas ascending aortic volume flow measurement did not show significant differences between the patient and healthy control groups, volume flow curves in the descending aorta did show significant differences between the two groups. Peak volume flow (mean ± SD) was 10.6 ± 5.3 liters/min in patients and 19.6 ± 4.7 liters/min in control subjects (p < 0.001). Time-averaged flow was 2.5 ± 0.9 liters/min in patients and 3.9 ±1.1 liters/min in control subjects (p < 0.05). The descending/ ascending aorta flow ratio was 0.47 ± 0.19 in patients and 0.64 ±0.08 in control subjects (p < 0.05). These variables correlate well with the degree of aortic narrowing. Peak coarctation jet velocity measured by MRI velocity mapping is comparable to that obtained from continuous wave Doppler study (r = 0.95).Conclusions. We established normal ranges for volume flow in the descending aorta and demonstrated abnormalities in patients with aortic coarctation. These abnormalities are likely to be related to resistance to flow imposed by the coarctation and could represent an additional index for monitoring patients before and after intervention

    A novel shading analysis method for PV systems using sun path plots and high resolution performance data

    Get PDF
    This paper presents a technique for identifying and quantifying shading losses in PV systems. Five minute interval monitored data from domestic UK PV systems is used to assess the effects of trees and other shading objects on annual energy generation. Poor performance is identified from the relationship between in-plane irradiance and performance ratio. Shading events are identified by plotting the occurrences of poor performance on a ‘sun path plot’ of solar azimuth and elevation axes. Poor performance which concentrates about particular sun positions is identified as shading. Once identified, the energy loss due to shading is quantified

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature

    O- vs. N-protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a peri N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group

    Get PDF
    X-ray crystallography and solid-state NMR measurements show that protonation of a series of 1-dimethylaminonaphthalene-8-ketones leads either to O protonation with formation of a long N–C bond (1.637–1.669 Å) between peri groups, or to N protonation and formation of a hydrogen bond to the π surface of the carbonyl group, the latter occurring for the larger ketone groups (C(O)R, R = t-butyl and phenyl). Solid state 15N MAS NMR studies clearly differentiate the two series, with the former yielding significantly more deshielded resonances. This is accurately corroborated by DFT calculation of the relevant chemical shift parameters. In the parent ketones X-ray crystallography shows that the nitrogen lone pair is directed towards the carbonyl group in all cases

    The promoter polymorphism -232C/G of the PCK1 gene is associated with type 2 diabetes in a UK-resident South Asian population

    Get PDF
    Background: The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. \ud \ud Methods: We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. \ud \ud Results: Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). \ud \ud Conclusion: This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group. \ud \ud Trial registration: UKADS Trial Registration: ISRCTN38297969

    Modulation of σ-Alkane Interactions in [Rh(L2)(alkane)]+ Solid-State Molecular Organometallic (SMOM) Systems by Variation of the Chelating Phosphine and Alkane : Access to η2,η2-σ-Alkane Rh(I), η1-σ-Alkane Rh(III) Complexes, and Alkane Encapsulation

    Get PDF
    Solid/gas single-crystal to single-crystal (SC-SC) hydrogenation of appropriate diene precursors forms the corresponding σ-alkane complexes [Rh(Cy2P(CH2)nPCy2)(L)][BArF 4] (n = 3, 4) and [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(L)][BArF 4] (n = 5, L = norbornane, NBA; cyclooctane, COA). Their structures, as determined by single-crystal X-ray diffraction, have cations exhibiting Rh···H-C σ-interactions which are modulated by both the chelating ligand and the identity of the alkane, while all sit in an octahedral anion microenvironment. These range from chelating η2,η2 Rh···H-C (e.g., [Rh(Cy2P(CH2)nPCy2)(η2η2-NBA)][BArF 4], n = 3 and 4), through to more weakly bound η1 Rh···H-C in which C-H activation of the chelate backbone has also occurred (e.g., [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(η1-COA)][BArF 4]) and ultimately to systems where the alkane is not ligated with the metal center, but sits encapsulated in the supporting anion microenvironment, [Rh(Cy2P(CH2)3PCy2)][COÅBArF 4], in which the metal center instead forms two intramolecular agostic η1 Rh···H-C interactions with the phosphine cyclohexyl groups. CH2Cl2 adducts formed by displacement of the η1-alkanes in solution (n = 5; L = NBA, COA), [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(κ1-ClCH2Cl)][BArF 4], are characterized crystallographically. Analyses via periodic DFT, QTAIM, NBO, and NCI calculations, alongside variable temperature solid-state NMR spectroscopy, provide snapshots marking the onset of Rh···alkane interactions along a C-H activation trajectory. These are negligible in [Rh(Cy2P(CH2)3PCy2)][COÅBArF 4]; in [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(η1-COA)][BArF 4], σC-H → Rh σ-donation is supported by Rh → σ∗C-H "pregostic" donation, and in [Rh(Cy2P(CH2)nPCy2)(η2η2-NBA)][BArF 4] (n = 2-4), σ-donation dominates, supported by classical Rh(dπ) → σ∗C-H π-back-donation. Dispersive interactions with the [BArF 4]- anions and Cy substituents further stabilize the alkanes within the binding pocket

    An experimental study of air flow and temperature distribution in a room with displacement ventilation and a chilled ceiling

    Get PDF
    Displacement ventilation and chilled ceiling panel systems are potentially more energy efficient than conventional air conditioning systems and are characterized by the presence of vertical temperature gradients and significant radiant asymmetry. The characteristics of this type of system have been studied by making temperature and air flow measurements in a test chamber over a range of operating parameters typical of office applications. Results from the displacement ventilation study are consistent with other studies and show that normalized temperature profiles are independent of internal heat gain. Linear temperature gradients in the lower part of the room were found, in all cases, to be driven by convection from the adjacent walls. Significant mixing, indicated by reduced temperature gradients, was evident in the upper part of the room in the chilled ceiling results at higher levels of heat gain. Visualization experiments, velocity measurements and related numerical studies indicated that with greater heat gains the plumes have sufficient momentum to drive flow across the ceiling surface and down the walls. The significance of forced, as opposed to natural convection, is also suggested by relatively low Richardson Number (Ri) values found near the ceiling. Furthermore, in cases with moderately high internal gains, comparison of the temperature gradients indicated that the effect of ceiling surface temperature on the degree of mixing and the magnitude of the temperature gradient were of secondary importance. These findings are in contrast to the view that it is natural convection at the ceiling that causes enhanced mixing
    • …
    corecore