351 research outputs found

    Satellite attitude identification and prediction based on neural network compensation

    Get PDF
    This paper proposed a new attitude determination method for low orbit spacecraft. The attitude prediction accuracy is greatly improved by adding the unmodeled environmental torque to the dynamic equation. Specifically, the environmental torque extraction algorithm based on extended Kalman filter (EKF) and series extended state observer is introduced, and the unmodeled part of dynamic is identified through the inverse dynamic model. Then the collected data are analyzed and trained by a back propagation neural network, resulting in an attitude-torque mapping network with compensation ability. The simulation results show that the proposed feedback attitude prediction algorithm can outperform standard methods and provide a high accurate picture of prediction and reliability with discontinuous measurement

    An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part I - small strain formulation

    Full text link
    Mechanical densification of granular bodies is a process in which a loose material becomes increasingly cohesive as the applied pressure increases. A constitutive description of this process faces the formidable problem that granular and dense materials have completely different mechanical behaviours (nonlinear elastic properties, yield limit, plastic flow and hardening laws), which must both be, in a sense, included in the formulation. A treatment of this problem is provided here, so that a new phenomenological, elastoplastic constitutive model is formulated, calibrated by experimental data, implemented and tested, that is capable of describing the transition between granular and fully dense states of a given material. The formulation involves a novel use of elastoplastic coupling to describe the dependence of cohesion and elastic properties on the plastic strain. The treatment falls within small strain theory, which is thought to be appropriate in several situations; however, a generalization of the model to large strain is provided in Part II of this paper.Comment: 42 pages, 27 figure

    On the quasi-yield surface concept in plasticity theory

    Get PDF
    In this paper we provide deeper insights into the concept of the quasi-yield surface in plasticity theory. More specifically, in this work, unlike the traditional treatments of plasticity where special emphasis is placed on an unambiguous definition of a yield criterion and the corresponding loading-unloading conditions, we place emphasis on the study of a general rate equation which is able to enforce elastic-plastic behavior. By means of this equation we discuss the fundamental concepts of the elastic range and the elastic domain. The particular case in which the elastic domain degenerates into its boundary leads to the quasi-yield surface concept. We exploit this concept further by discussing several theoretical issues related to it and by introducing a simple material model. The ability of the model in predicting several patterns of the real behavior of metals is assessed by representative numerical examples

    A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain

    Get PDF
    An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled thermo-hydro-mechanical behavior of porous media undergoing large deformation. We first formulate a finite-deformation thermo-hydro-mechanics field theory for non-isothermal porous media. Projection-based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due to the lack of the two-fold inf-sup condition of the equal-order finite element. To avoid volumetric locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation gradient in the formulation for non-isothermal porous solids. Finally, numerical examples are given to demonstrate the versatility and efficiency of this thermo-hydro-mechanical model

    Retarded Growth and Deficits in the Enteric and Parasympathetic Nervous System in Mice Lacking GFRα2, a Functional Neurturin Receptor

    Get PDF
    AbstractGlial cell line–derived neurotrophic factor (GDNF) and a related protein, neurturin (NTN), require a GPI-linked coreceptor, either GFRα1 or GFRα2, for signaling via the transmembrane Ret tyrosine kinase. We show that mice lacking functional GFRα2 coreceptor (Gfra2−/−) are viable and fertile but have dry eyes and grow poorly after weaning, presumably due to malnutrition. While the sympathetic innervation appeared normal, the parasympathetic cholinergic innervation was almost absent in the lacrimal and salivary glands and severely reduced in the small bowel. Neurite outgrowth and trophic effects of NTN at low concentrations were lacking in Gfra2−/− trigeminal neurons in vitro, whereas responses to GDNF were similar between the genotypes. Thus, GFRα2 is a physiological NTN receptor, essential for the development of specific postganglionic parasympathetic neurons

    Real-time nanodiamond thermometry probing in vivo thermogenic responses

    Get PDF
    蛍光ナノダイヤモンドを用いた量子温度計により動物個体の発熱を捉えることに成功. 京都大学プレスリリース. 2020-09-25.Get diamonds, take temperature. 京都大学プレスリリース. 2020-10-06.Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities. However, it is challenging to reduce the size of biocompatible thermometers down to submicrometers, despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds, we demonstrate in vivo real-time temperature monitoring inside Caenorhabditis elegans worms. We developed a microscope system that integrates a quick-docking sample chamber, particle tracking, and an error correction filter for temperature monitoring of mobile nanodiamonds inside live adult worms with a precision of ±0.22°C. With this system, we determined temperature increases based on the worms’ thermogenic responses during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates the submicrometer localization of temperature information in living animals and direct identification of their pharmacological thermogenesis, which may allow for quantification of their biological activities based on temperature

    Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing

    Get PDF
    Publisher Copyright: © 2022 Jing Cai et al.Organic aerosol (OA) is a major component of fine particulate matter (PM), affecting air quality, human health, and the climate. The absorptive and reflective behavior of OA components contributes to determining particle optical properties and thus their effects on the radiative budget of the troposphere. There is limited knowledge on the influence of the molecular composition of OA on particle optical properties in the polluted urban environment. In this study, we characterized the molecular composition of oxygenated OA collected on filter samples in the autumn of 2018 in Beijing, China, with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). Three haze episodes occurred during our sampling period with daily maximum concentrations of OA of 50, 30, and 55 μg m-3. We found that the signal intensities of dicarboxylic acids and sulfur-containing compounds increased during the two more intense haze episodes, while the relative contributions of wood-burning markers and other aromatic compounds were enhanced during the cleaner periods. We further assessed the optical properties of oxygenated OA components by combining detailed chemical composition measurements with collocated particle light absorption measurements. We show that light absorption enhancement (Eabs) of black carbon (BC) was mostly related to more oxygenated OA (e.g., dicarboxylic acids), likely formed in aqueous-phase reactions during the intense haze periods with higher relative humidity, and speculate that they might contribute to lensing effects. Aromatics and nitro-aromatics (e.g., nitrocatechol and its derivatives) were mostly related to a high light absorption coefficient (babs) consistent with light-absorbing (brown) carbon (BrC). Our results provide information on oxygenated OA components at the molecular level associated with BrC and BC particle light absorption and can serve as a basis for further studies on the effects of anthropogenic OA on radiative forcing in the urban environment.Peer reviewe

    A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain

    Get PDF
    An adaptively stabilized finite element scheme is proposed for a strongly coupled hydro-mechanical problem in fluid-infiltrating porous solids at finite strain. We first present the derivation of the poromechanics model via mixture theory in large deformation. By exploiting assumed deformation gradient techniques, we develop a numerical procedure capable of simultaneously curing the multiple-locking phenomena related to shear failure, incompressibility imposed by pore fluid, and/or incompressible solid skeleton and produce solutions that satisfy the inf-sup condition. The template-based generic programming and automatic differentiation (AD) techniques used to implement the stabilized model are also highlighted. Finally, numerical examples are given to show the versatility and efficiency of this model

    Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing

    Get PDF
    Relatively high concentrations of preexisting particles, acting as a condensation sink (CS) of gaseous precursors, have been thought to suppress the occurrence of new particle formation (NPF) in urban environments, yet NPF still occurs frequently. Here, we aim to understand the factors promoting and inhibiting NPF events in urban Beijing by combining one-year-long measurements of particle number size distributions and PM2.5 chemical composition. Our results show that indeed the CS is an important factor controlling the occurrence of NPF events, with its chemical composition affecting the efficiency of the background particles in removing gaseous H2SO4 (effectiveness of the CS) driving NPF. During our observation period, the CS was found to be more effective for ammonium nitrate-rich (NH4NO3-rich) fine particles. On non-NPF event days, particles acting as CS contained a larger fraction of NH4NO3 compared to NPF event days under comparable CS levels. In particular, in the CS range from 0.02 to 0.03 s(-1), the nitrate fraction was 17% on NPF event days and 26% on non-NPF event days. Overall, our results highlight the importance of considering the chemical composition of preexisting particles when estimating the CS and their role in inhibiting NPF events, especially in urban environments.Peer reviewe
    corecore