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Abstract

This paper proposed a new attitude determination method for low orbit spacecraft. The at-

titude prediction accuracy is greatly improved by adding the unmodeled environmental torque

to the dynamic equation. Specifically, the environmental torque extraction algorithm based on

extended Kalman filter (EKF) and series extended state observer is introduced, and the unmod-

eled part of dynamic is identified through the inverse dynamic model. Then the collected data

are analyzed and trained by a back propagation neural network, resulting in an attitude-torque

mapping network with compensation ability. The simulation results show that the proposed

feedback attitude prediction algorithm can outperform standard methods and provide a high

accurate picture of prediction and reliability with discontinuous measurement.

1 Introduction

The attitude determination of low earth orbit (LEO) satellite is essential for the normal operation

such as communication, maneuver and telemetry etc. Under normal circumstances, the satellite is

equipped with infrared earth sensors and star sensors, which can achieve precise attitude determi-

nation in real time. However, at the end of the satellite service life, or serious malfunctions occur in

satellite electronic system, the attitude determination system is unable to function properly. Then

it is necessary to descend the orbit for the ablation and disorganization in the atmosphere. During

this process, accurate satellite attitude prediction without the assistance of sensors is very critical,

which can help to determine the condition of satellite debris, estimate the landing area, and reduce

the damage caused by debris in advance.

Since the 1960s, researchers have been constantly exploring how to estimate the orientation

of nonworking LEO satellite. There are two main research interests, the first is to refine the en-

vironmental torque model, including the gravitational gradient torque [1–3], magnetic torque [4],
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aerodynamic torque [5–7], etc. The offline attitude estimation accuracy and credible period have

been greatly improved with the meticulous environment model. The second method based is based

on filtering and optimization on of measurement results observed by ground facility facilities. Many

data processing algorithms including the modified Kalman filter [8], spatial-based Least Square Esti-

mation [9], multiple model adaptive estimation [10], centered error entropy Unscented Kalman filter

[11] and the predictive Attitude Determination algorithm [12] etc. are used to filter out the obser-

vation noise tangled in the data. These data filtering algorithms have been successfully validated on

multiple aircraft platforms [13–16].

The disadvantages of the above aforementioned techniques are also evident. The method based

on refined environment model can estimate the effect precisely in a period of time, but the reliability

wound descend greatly due to the uncertainty of aerodynamic model and satellite parameters. On

the other hand, the method based on data filtering and optimization can obtain accurate observations

in real time, but it is difficult to combine the prediction algorithm with the dynamic model to form

a prediction framework due to the high nonlinearity and coupling of the environmental torques.

Recently, the breakthrough in neural network recently provides possibility for accurate attitude

prediction. The Neural network is a nonlinear mapping function with high generalization ability

and self-learning ability. It has been proved mathematically that the network structure with enough

neurons can estimate any nonlinear function with extremely high accuracy [17]. The combination

of neural network and dynamic model has been applied to the fields of aerospace, machinery and

intelligent control. [18] combines the fuzzy intelligence control with neural network to achieve the

attitude control of a solar sail. [19] develops a neural network based attitude controller of a satellite

with deployable solar arrays. [20] utilizes neural network to adjust the parameters of PID control of

satellite efficiently. [21] implements an adaptive Neural Network with quaternion and Euler angles

for the optimization of PID satellite attitude dynamics and control system. [22] proposes an adaptive

control method based on RBF neural network to solve the problem of satellite attitude tracking.

However, the above methods only propose theory and simulation experiment, without actual data as

verification, and does not consider the measurement noise, which reduces the reliability in practical

applications.

The main contributions of this paper are as follows: firstly, a feedback attitude prediction al-

gorithm is proposed, which can achieve the current and persistent attitude prediction with high

accuracy. The complex dynamic model, few short-term attitude observation data and extremely

uncertain atmospheric torque cause it difficult to determine the attitude. However, our methods

can extract the high-order unmodeled dynamics from the attitude data and then compensates the

environment uncertainty through a trained neural network. Secondly, A high-order torque identifi-

cation framework based on EKF and series extended state observer is proposed, which can reduce

observation noise and effectively extract uncertain environmental torque. The proposed framework

can well solve the deficency of conventional ESO observation in non-cascade system, and combine

Kalman filter to reduce the observation error. Through the combination of the two contributions, a

set of highly portable spacecraft attitude and orbit prediction framework is provided.

The organization of this paper proceeds as follows: In section II, the environmental torques con-

sidered in LEO are reviewed and the attitude kinematics and dynamics model based on quaternion
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are introduced. Then, the unmodeled torque extraction algorithm based on extended Kalman filter

and series extended state observer is proposed in section III. A well-trained torque compensation

network is introduced in section IV, which can map the current state to the unmodeled environment

torque. In section V, simulation results based on an actual satellite is presented to illustrate the

effectiveness of the proposed algorithm. The results show that the method can reduce the atti-

tude prediction error effectively and maintain the reliability of the estimation at a high level with

persistent on-line measurement.

2 Attitude prediction model of LEO satellite

For falling spacecrafts in LEO, the main environmental disturbances are the gravitational gradient

torque generated by gravity and the aerodynamic torque generated by atmospheric drag. Under the

interference of these environmental torques, the spacecraft velocity and angular velocity also change,

further affecting the prediction of the meteorite trajectory. This Section reviews the environmental

torque considered in LEO, and furthermore demonstrates the kinematics and dynamics framework of

attitude prediction based on quaternion. The transformation between the Euler angle and quaternion

is also presented.

2.1 Environmental torque of LEO satellites

LEO satellites are affected by various environmental torques, including gravity gradient torque,

aerodynamic torque, solar radiation torque, magnetic torque, etc. The torques are related to satellite

and environment conditions, such as the size, mass, mass distribution and orbital height which

are essential for the attitude prediction of the uncontrolled satellite. For LEO spacecrafts, the

aerodynamic torque and gravity gradient torque are mainly considered. The gravity gradient torque

is often utilized to stabilize the Earth pointing with several degrees of error. The aerodynamic torque

plays a dominant role in the LEO and will interfere the control system, causing the spacecraft to

reverse at the end of the mission.

According to the law of gravitation, the gravity of the earth decreases with the distance from

the earth center. So, the gravity of each part of the satellite is also different, resulting in the gravity

gradient torque. The gravity gradient torque can be described as [23]:

NGG =
3µ

∥r∥5
[r× (J · r)] (1)

where r represents the centroid position vector of satellite relative to the earth, J is the inertia

matrix of satellite and µ is the gravitational constant of the earth. For LEO satellites, if the inertia

matrix is on the order of 1000 kgm2, then the gravity gradient torque is around 3× 10−3Nm [23].

The aerodynamic torque is generally caused by the impact of atmospheric molecules on the

surface of spacecraft. The complex space shape leads to different aerodynamic forces on different

sides of the asymmetric satellite, resulting in the aerodynamic torque. The aerodynamic torque is

related to many elements, including the current altitude, velocity, windward area and so on. Since
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it is difficult to calculate the windward area in real time, Wind tunnel tests are usually carried out

to obtain the aerodynamic coefficients under different attitudes. Then the aerodynamic torque is

determined according to the angle of attack and sideslip angle in the prediction. The aerodynamic

torque can be described as [23]:

Naero =
1

2
CDSrefρv

2rcp−cm (2)

where CD represents the aerodynamic torque coefficients in three directions in body coordinate

system, Sref is the reference windward area, ρ represents the atmosphere density, v is the velocity

of the satellite and rcp−cm is the offset distance between the satellite centroid and the pressure

center. The coefficient matrix is obtained in real time by calculating the attack angle and sideslip

angle. Considering a satellite with an orbital altitude of 300 km, the velocity is around 7.7 km/s,

the atmosphere density is around 5 × 10−11kg/m3, suppose the windward area is 1m2 and the

aerodynamic arm is 1m, then the aerodynamic torque is around 3 × 10−3Nm at the same level as

the gravity gradient torque [23].

As for magnetic torque and solar radiation torque, for ordinary LEO satellites, the magnitude

of both is around 1× 10−5Nm , which is too small compared with the gravity gradient torque and

the aerodynamic torque. Therefore, the magnetic torque and the solar radiation torque are not

considered in this paper [23].

2.2 Attitude kinematics and dynamics equations

The attitude of satellite is usually defined by the rotation between the Earth Centered Inertial

system (ECI) and the body fixed frame. The Euler angle rotation sequence used in this work is

yaw-pitch-roll. Based on the above definition, the attitude kinematics equation in the Euler angle

form is given by: 
φ̇ = 1

cos θ (ωxb sin θ sinφ+ ωxb cos θ + ωzb cosφ sin θ)

θ̇ = ωyb cosφ− ωzb sinφ

ψ̇ = 1
cos θ (ωyb sinφ+ ωzb cosφ)

(3)

where ψ, θ, φ represent the yaw, pitch, roll angle, ωb = [ωxb, ωyb, ωzb]
T

is the angular velocity

expressed in body fixed frame.It is worth noting that in some special attitudes (the pitch angle is

±90°), the attitude kinematics equation expressed by the Euler angles Eq.(3) will cause singularities.

In this paper, we use quaternions to express the attitude kinematics equation as:
q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −ωxb −ωyb −ωzb
ωxb 0 ωzb −ωyb
ωyb −ωzb 0 ωxb

ωzb ωyb −ωxb 0

 ·


q0

q1

q2

q3

 (4)

The main advantage of the quaternion representation is that the attitude kinematic equation

is free of singularities, and the kinematics equation matrix is linear. In addition, the conversion
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between the quaternion and the Euler angle can be written as:

φ = arcsin (2 (q2q3 + q0q1))

θ = arctan −2(q1q2−q0q3)
q20−q21+q22−q23

ψ = arctan −2(q1q3−q0q2)
q20−q21−q22+q23

(5)

q =


cos φ2 cos θ2 cos

ψ
2 + sin φ

2 sin θ
2 sin

ψ
2

sin φ
2 cos θ2 cos

ψ
2 − cos φ2 sin θ

2 sin
ψ
2

cos φ2 sin θ
2 cos

ψ
2 + sin φ

2 cos θ2 sin
ψ
2

cos φ2 cos θ2 sin
ψ
2 − sin φ

2 sin θ
2 cos

ψ
2

 (6)

As for the attitude dynamics, the angular momentum of the spacecraft can be expressed as:

H = Jωb (7)

according to the angular momentum theorem, the change rate of the spacecraft angular momentum

can be expressed as:
dH

dt
= M (8)

the above equation holds in any coordinate system while the inertia matrix changes with the rotation

of the spacecraft in the ECI, which is difficult for the attitude integral prediction. Generally, the

attitude dynamic equation is usually expressed in the body fixed frame as:

J · ω̇b + ωb × (J · ωb) = M (9)

where M represents the sum of environmental moments.

3 Filtering and determination of attitude

In the open-loop prediction, the accurate measurement of satellite attitude is very important. A

tiny initial deviation will cause the prediction results to gradually deviate from the actual condition.

The most straightforward method to estimate the satellite attitude for a long time is to combine the

dynamic model with the observation data, and then calculate the optimal estimation according to the

principle of minimum variance. After obtaining the attitude estimation, the high-order unmodeled

information can be extracted from the original data through the extended state identification, which

will be instrumental to refine the dynamic model. In this Section, the estimation results of the

satellite state are obtained by the extended Kalman filter (EKF), and then the unmodeled torque

of satellite is estimated by series of the extended state observer (ESO).

3.1 Extended Kalman filter

The attitude data measured by the ground observation facility have uncertain Gaussian noise, which

brings trouble to high precise attitude determination. The extended Kalman filter can integrate
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attitude measurement data and prediction system by updating the optimal estimation of the satellite

attitude online according to the real-time observation. In this Section, the satellite attitude is

expressed as a quaternion vector, and the more accurate attitude estimation is obtained by a standard

EKF process. Consider the nonlinear prediction update shown by:

x̂−
k+1 = x̂k + f(x̂k)∆t (10)

where f(x̂k) represents the sum of nonlinear environment torque at state x̂k, ∆t represents the step

size of EKF. Assuming that the covariance matrix of the current state is Pk, then the update of the

covariance matrix is given by:

P−
k+1 = Φk+1PkΦ

T
k+1 +Qk+1 (11)

where Q represents the system process noise covariance matrix and Φk is the state transition matrix

and can be expressed in the following form:

Φk =
1

2



2∆t −ωxk −ωxk −ωxk −q1k −q2k −q3k
ωxk 2∆t ωzk −ωyk q0k −q3k q2k

ωyk −ωzk 2∆t ωxk q3k q0k −q1k
ωzk ωyk −ωzk 2∆t −q2k q3k q0k

0 0 0 0 2∆t 0 0

0 0 0 0 0 2∆t 0

0 0 0 0 0 0 2∆t


(12)

The Kalman gain update equation is defined as:

Kk+1 = P−
k+1H

T
k+1(Hk+1P

−
k+1H

T
k+1 +Rk+1)

−1
(13)

where R represents the measurement noise covariance matrix and Hk is the measurement matrix,

and for simplicity of calculation we have:

Hk =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (14)

Then the state and the covariance matrix update based on Kalman gain can be expressed as:

x̂k+1 = x̂−
k+1 +Kk

(
yk+1 −Hx̂−

k+1

)
(15)

Pk+1 = [I−Kk+1Hk+1]P
−
k+1[I−Kk+1Hk+1]

T
+Hk+1Rk+1H

T
k+1 (16)

where yk = Hx̂k represents the measurement results at tk.

Remark. It is worth noting that in the process of EKF, the process noise and measurement noise

must meet the conditions of the linear uncorrelation, the zero mean and Gaussian distribution,
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otherwise the filtering result may be inaccurate.

3.2 Series extend state observer

Some status information is difficult to be measured directly by the sensors in the field of engineering,

such as angular velocity, angular acceleration, etc. However, the uncertainty estimation, including

the internal coupling, the external unknown disturbances and the unmodeled dynamics can be deter-

mined with rarely observation information by building an extended state observer. After obtaining

the optimal attitude estimation with the EKF, a series of extended state observer is introduced

to extract the high-order unmodeled information hiding in the attitude. Consider the following

nonlinear dynamic system to be observed:{
q̇ = A(ω)q

Jω̇ = −ω × Jω + f(q, s) + d
(17)

where q = [q0, q1, q2, q3]
T

represents the attitude quaternion, f(q, s) is the known as high-order

input, which stands for the known environment torques of satellite based on orbit information s, d is

the unknown disturbance to be identified. A series extend state observation system d̂ = Φb(Φa(q))

is constructed in order to obtain the best estimation of d. The internal observer is designed as

follows:

Φa :


e1 = za1 − y1

ża1 = za2 − βa1e1

ża2 = −βa2fal (e1, 0.5, δ)
(18)

where y1 ∈ qi+ vi(i = 0, 1, 2, 3)represents the attitude measurement results based on the sensors

and the ground observation facility, vi is the measurement noise , βa = [βa1, βa2] > 0 is the feedback

coefficient, za = [za1, za2]
T
is the observer system state and the nonlinear error correction function

is given by:

fal(ε, α, δ) =

{
|ε|α sgn(ε), |ε| > δ

ε/δ1−α, |ε| ≤ δ
(19)

The estimated value of the quaternion derivative can be expressed as: za2 = ˆ̇q, and the estimation

results of the angular velocity is obtained through the reverse process of Eq.(4) as :

[
ω̂

0

]
= 2


−q1 −q2 −q3 0

q0 −q3 q2 0

q3 q0 −q1 0

−q2 q1 q0 1


−1

· ˆ̇q (20)

The internal ESO has been completed up to now. The angular velocity information of the

satellite system can be extracted from the observed quaternion data through the internal ESO,

and the angular velocity can be more accurate through a low-pass filter. The external observer is
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designed as follows:

Φb :


e2 = zb1 − y2

żb1 = zb2 − βb1e2

żb2 = −βb2fal (e2, 0.25, δ)
(21)

where y2 ∈ ω̂i(i = 1, 2, 3)represents the angular velocity estimation results based on the internal

ESO, βb = [βb1, βb2] > 0 is the feedback coefficient, zb = [zb1, zb2]
T

is the observer system state

and zb2 = ˆ̇ωi is the estimation result of angular velocity derivative. Then the estimation result of

environment torques can be obtained through the inverse process of Eq.(17) as:

d̂ = ω̂ × Jω̂ − J ˙̂ω − f(q̂, s) (22)

Similar to the internal ESO, the high-frequency oscillation generated in the estimation process

can be suppressed by designing a low-pass filter.

4 Unmodeled compensation based on Neural Network

In this Section, a double hidden layer back propagation (BP) network is constructed to learn the

unmodeled environment torque in the satellite. The BP Neural network has high generalization

and self-learning ability and can reconstruct the mapping relationship between the state and the

environmental torque, and plays a critical role in attitude prediction system.

… …

xd
0q

1q

2q

3q

yd

zd

Figure 1: The structure of attitude prediction BP network.

Considering a three-layer neural network as shown in the figure 2, the input layer of the network

is the measured attitude information: xinput = [q0, q1, q2, q3]
T , and the tutor signal of supervised

learning is the unmodeled torque identified in Section 3: y = [d1, d2, d3]
T . The activation function

of the first hidden layer is the “Relu” function defined as:

Relu : f1(s) =

{
s s > 0

0 s ≤ 0
(23)

then the relationship between the first input and output layer can be expressed as:
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x
(2)
i = f1(s

(1)
i ) = f1

N1−1∑
j=0

w
(1)
ij x

(1)
j

 i = 1, 2, ..., N1 (24)

where N(q), q = 1, 2, 3 represents the number of neurons in each layer, x0 = 1 represents the bias

term, which is not displayed in Figure 2 for the intuition. The activation function of the second

hidden layer is a ”Sigmoid” function defined as:

Sigmoid : f(s) =
1

1 + e−s
(25)

then the relationship between the second input and output layer can be expressed as:

x
(3)
i = f2(s

(2)
i ) = f2

N2−1∑
j=0

w
(2)
ij x

(2)
j

 i = 1, 2, ..., N2 (26)

the final output of neural network is shown as:

yi =

N3−1∑
j=0

w
(3)
ij x

(3)
j i = 1, 2, 3 (27)

The above process denotes the forward propagation of a single group of samples. For the N groups

of measured samples, xinput = [q1,q2, ...,qN ], and the tutor signal: ytarget = [d1,d2, ...,dN ]. The

loss function based on sample set is selected as:

E =
1

2

N∑
p=1

(
d̂p − dp

)2

=
1

2

N∑
p=1

Ep (28)

During the process of the network learning, the weight is constantly updated according to the

error between the output y and the tutor signal ytarget. For the q-th layer:

∂Ep

∂w
(q)
ij

=
∂Ep

∂x
(q)
pi

∂x
(q)
pi

∂s
(q)
pi

∂s
(q)
pi

∂w
(q)
ij

= −
(
dpi − x

(q)
pi

)
f ′q

(
s
(q)
pi

)
x
(q−1)
pj

(29)

by analogy, the result of
∂Ep

∂w
(q)
ij

, q = 1, 2, 3 is calculated continuously by backward propagation. Then

the update of each neuron weights can be expressed as:

w
(q)
ij (k + 1) = w

(q)
ij (k) + α

∂Ep

∂w
(q)
ij

(30)

where α > 0 is the network learning rate. The whole training process is shown in Figure 2.

Remark. The normalization of the network is essential. Since the magnitude of the identified

environmental torque is too small, the training set should be mapped to the range of [0,1] by nor-
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Network initialization

Training set initialization

Calculate the error 

between the network 

output and target

Error back propagation

Network weight update

Sufficient 

iterations?

Training complete

Yes

No

Figure 2: The whole training process of the neural network.

malization for a better training efficiency. The corresponding linear transformation is also required

during verification of the test set and the attitude prediction process.

5 Simulation and results

In this Section, the whole process and simulation results of the prediction system are presented.

The target spacecraft is selected as Tiangong-1 Space Station descending into the atmosphere. The

detailed parameters are shown in Table 1. Due to the coupling effect of the spacecraft orbit and atti-

tude, it is difficult to consider the independent influence of the environmental torque independently.

Therefore, 13 state parameters including a three-axis position, a three-axis velocity (both expressed

in J2000 coordinate system), a quaternion and an angular velocity are used in the simulation. A

disturbance is artificially added to the simulation as the unmodeled environmental torque. The time

step of the EKF is 0.1s, and the covariance matrix of the observation noise is 1e-4 , which means

that 1.1° noise is contained into the observation.

Table 1: The initial orbit and attitude parameters of Tiangong-1 space station.

Mass (kg) 7661.4
Attitude angle (°) 91,-59,-137

Angular velocity(°/s) -0.2679,-0.01085,1.0207
Position (km, in J2000) 4561.4433,-3977.5169,-2366.0892
Velocity (km/s, in J2000) 5.3239 3.3147 4.6915

Inertia matrix(kgm2)

16407.00 −132.87 448.55
−132.87 76391.94 −27.54
448.55 −27.54 70912.02



The main structure of the prediction system is shown in Figure 3. Under the interference of the
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Satellite 

model

d̂

+
yEnvironment

moment

+

Network

training

Network

compensation

Moment extract

filter

Attitude 

prediction

Figure 3: The structure of attitude prediction system.

complex environmental torque and the attitude orbit coupling, the angular velocity of the spacecraft

changes irregularly. The attitude data is used as measurement samples for the torque identification

and the attitude prediction algorithm verification. Figure 4 shows the real attitude and angular

velocity of the spacecraft in low earth orbit for 1 hour. Figure 5 shows the euler angle error in

distribution diagram.
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Figure 4: The real Euler angle and angular velocity.

After a period of iteration, the tracking is extracted quickly. The identification results have

strong shake since the extended state observer is highly based on the observation. However, these

shakes are filtered out during the training of the neural network due to the independence between

the attitude and the estimated results. The identification results are provided to the neural network
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according to the algorithm in Section 4. The neural network parameters used in this paper are set

as: N1 = 6, N2 = 6, learning rate α = 0.1, maximum epoch is 200. The real torques, identification

results and network output are shown in Figure 6. The yellow represents the identification results,

the blue represents the real torque and red represents the torque estimated by the trained neural

network. The results show that the neural network can eliminate the shakes in the ESO and obtain

high-precision estimation of the unmodeled dynamics. Besides, the activation function of the neural

network has a great influence on the learning effect. The neural network with the “relu+sigmoid”

activation function has better effect than other activation functions through simulations, such as the

”sigmoid+relu”, ”sigmoid+sigmoid” function, etc.

Figure 7 shows the prediction effect of the whole system after compensation. The blue line

represents the real attitude after 1 hour, the red line represents the attitude prediction results without

neural network compensation, the yellow line represents the attitude prediction compensated by the

neural network, while the purple line represents the attitude estimation generated by using the direct

state estimation results, in which the error is large due to the interference of measurement noise.

The comparison shows that the attitude estimation accuracy after compensation is higher and the

accurate period is longer.

The final results of the proposed algorithm and the attitude determination results are presented

in Figure 8. The results shows the observation error of the neural network compensated, directly

compensated and uncompensated prediction with the periodic observation correction (the cycle is

500s). The comparison indicates that under the periodic observation correction, the spacecraft atti-

tude prediction drift in the LEO exceeds 100 ° with directly compensation or without compensation,

while the error is nearly controlled within 10 ° under the function of the neural network compensa-

tion, which demonstrate the effectiveness of the whole attitude compensation and prediction system.

6 Conclusion

In this paper, a novel prediction system is proposed to solve the attitude determination problem

of the low orbit malfunctioning satellite. An unmodeled torque identification method based on the

quaternion is introduced. Then, an attitude prediction system is proposed combined with the BP

neural network. The simulation results show that this method has high prediction accuracy and high

reliability with discontinuous measurement, which proves the superiority and feasibility of this new

method. In addition, this method has high expansibility and can be applied to various high-precision

prediction fields with unmodeled disturbances. Excellent prediction results can be obtained easily

by optimizing the identification algorithm and designing appropriate activation function.
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[14] J. Najder and K. Sośnica, “Quality of orbit predictions for satellites tracked by slr stations,”

Remote Sensing, vol. 13, no. 7, 2021, issn: 2072-4292. doi: 10.3390/rs13071377.

[15] M. Y. Ovchinnikov, D. S. Ivanov, N. A. Ivlev, S. O. Karpenko, D. S. Roldugin, and S. S.

Tkachev, “Development, integrated investigation, laboratory and in-flight testing of chibis-m

microsatellite adcs,” Acta Astronautica, vol. 93, pp. 23–33, 2014, issn: 00945765. doi: 10.

1016/j.actaastro.2013.06.030.

[16] X. Huang et al., “The Tianwen-1 Guidance, Navigation, and Control for Mars Entry, Descent,

and Landing,” Space: Science & Technology, vol. 2021, 9846185, p. 9 846 185, Oct. 2021. doi:

10.34133/2021/9846185.

[17] S. Liang and R. Srikant, “Why deep neural networks for function approximation?,” 2016.

[18] S. R. Lin Chen Xiaoyu Fu and M. Xu, “Intelligent fuzzy control in stabilizing solar sail with

individually controllable elements,” Space: Science & Technology, 2022.

[19] A. V. Carrara, Satellite Attitude Acquisition Using a Neural Network Controller. Advances in

Space Dynamics, 2000.

[20] A. Zhang, Y. Liao, S. Ni, Z. Li, X. Yang, and D. Yan, “Simulation of satellite attitude control

based on bp neural network,” in 2021 6th International Conference on Intelligent Computing

and Signal Processing (ICSP), 2021, pp. 681–686. doi: 10.1109/ICSP51882.2021.9408751.

[21] M. Raja, K. Singh, A. Singh, and A. Gupta, “Design of satellite attitude control systems using

adaptive neural networks,” Incas Bulletin, vol. 12, no. 3, pp. 173–182, 2020, issn: 22474528

20668201. doi: 10.13111/2066-8201.2020.12.3.14.

16

D
ow

nloaded from
 https://spj.science.org on January 20, 2023



[22] S. T. Yu and C. Z. Fan, “Adaptive control of satellite attitude tracking based on rbf neural net-

work,” in 2020 5th International Conference on Automation, Control and Robotics Engineering

(CACRE).

[23] V. L. Pisacane, Fundamentals of space systems. Johns Hopkins University Appli, 2005, pp. 44–

50.

17

D
ow

nloaded from
 https://spj.science.org on January 20, 2023


