299 research outputs found

    Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering

    Full text link
    Polarized deep--inelastic scattering data on longitudinally polarized hydrogen and deuterium targets have been used to determine double spin asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for the production of positive and negative pions from hydrogen were obtained in a re--analysis of previously published data. Inclusive and semi--inclusive asymmetries for the production of negative and positive pions and kaons were measured on a polarized deuterium target. The separate helicity densities for the up and down quarks and the anti--up, anti--down, and strange sea quarks were computed from these asymmetries in a ``leading order'' QCD analysis. The polarization of the up--quark is positive and that of the down--quark is negative. All extracted sea quark polarizations are consistent with zero, and the light quark sea helicity densities are flavor symmetric within the experimental uncertainties. First and second moments of the extracted quark helicity densities in the measured range are consistent with fits of inclusive data

    Evidence for a narrow |S|=1 baryon state at a mass of 1528 MeV in quasi-real photoproduction

    Get PDF
    Evidence for a narrow baryon state is found in quasi-real photoproduction on a deuterium target through the decay channel p K^0_S --> p pi^+ pi^-. A peak is observed in the p K^0_S invariant mass spectrum at 1528 +/- 2.6 (stat) +/-2.1 (syst) MeV. Depending on the background model,the naive statistical significance of the peak is 4--6 standard deviations and its width may be somewhat larger than the experimental resolution of sigma=4.3 -- 6.2 MeV. This state may be interpreted as the predicted S=+1 exotic Theta^{+}(uuddbar(s)) pentaquark baryon. No signal for an hypothetical Theta^{++} baryon was observed in the pK^+ invariant mass distribution. The absence of such a signal indicates that an isotensor Theta is excluded and an isovector Theta is unlikely.Comment: 8 pages, 4 figure

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    How does our motor system determine its learning rate?

    Get PDF
    Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data. We conclude that our brain does not apply state estimation to determine the optimal planning correction for every individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level of error-signal reliability

    Inferring Visuomotor Priors for Sensorimotor Learning

    Get PDF
    Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the prior over visuomotor transformations – the mapping between actual and visual location of the hand – during a learning task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a Bayesian observer model in order to infer the covariance structure of the subjects' prior, which was found to give high probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover, through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior

    A Precision Measurement of the Lambda_c Baryon Mass

    Full text link
    The Λc+\Lambda_c^+ baryon mass is measured using Λc+ΛKS0K+\Lambda_c^+\to\Lambda K^0_S K^+ and Λc+Σ0KS0K+\Lambda_c^+\to\Sigma^0 K^0_S K^+ decays reconstructed in 232 fb1^{-1} of data collected with the BaBar detector at the PEP-II asymmetric-energy e+ee^+e^- storage ring. The Λc+\Lambda_c^+ mass is measured to be 2286.46±0.14MeV/c22286.46\pm0.14\mathrm{MeV}/c^2. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.Comment: 14 pages, 8 postscript figures, submitted to Phys. Rev.

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+ee^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×105(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×105(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×106<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett

    Search for the rare leptonic decay B+->mu(+)nu(mu) (vol 92, art no 221803, 2004)

    Get PDF

    Search for the rare leptonic decay B+->mu(+)nu(mu) (vol 92, art no 221803, 2004)

    Get PDF
    Corrections to the article published in the same review - same title (vol 92, art no 221803, 2004

    Measurement of branching fractions and resonance contributions for B-0 ->(D)over-bar(0)K(+)pi(-) and search for B-0 ->(DK+)-K-0 pi(-) decays

    Get PDF
    Using 226x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B-0->(D) over bar (0)K(+)pi(-), excluding B-0-> D*-K+, to be B(B-0->(0)K(+)pi(-))=(88 +/- 15 +/- 9)x10(-6). We observe B-0->(D) over bar K-0(*)(892)(0) and B-0-> D-2(*)(2460)K--(+) contributions. The ratio of branching fractions B(B-0-> D*-K+)/B(B-0-> D(*-)pi(+))=(7.76 +/- 0.34 +/- 0.29)% is measured separately. The branching fraction for the suppressed mode B-0-> D(0)K(+)pi(-) is B(B-0-> D(0)K(+)pi(-))< 19x10(-6) at the 90% confidence level
    corecore