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Abstract

Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the
proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the
learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These
dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to
determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test
whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen
optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They
received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals
was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction
for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning
rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a
simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data.
We conclude that our brain does not apply state estimation to determine the optimal planning correction for every
individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level
of error-signal reliability.
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Introduction

Over the last few decades, many studies have examined whether

optimality principles can explain human motor behaviour.

Although different frameworks have been used, such as optimal

(feedback) control (for reviews, see: [1,2]), statistical decision

theory (for a review, see: [3]), and Bayesian decision theory (for

reviews, see: [4,5]), all of these studies found evidence for the

principle that our motor system attempts to minimize a cost

function that includes variability or uncertainty, among others (see

also: [6,7]). The optimality approach has extended our under-

standing of motor control enormously, but it raises the question to

what extent motor control is optimal. Is every individual movement

that we make optimal, or is only some average behaviour optimal?

We will address this question for the example of determining the

learning rate in motor learning. When we produce a movement

error, this error can be used to improve planning of future

movements. The learning rate is the proportion of the error by

which planning is corrected. The learning rate does not need to be

constant but could depend on factors such as the reliability of the

error signal and the uncertainty of the motor system’s own state.

The problem of determining the learning rate has similarities with

the engineering problem of estimating the state of a system

through noisy observations. Every new observation can be used to

improve the state estimate, but the extent by which the estimate

should be adjusted depends on the reliability of the new

observation and on the uncertainty of the previous state estimate.

The more reliable the observation and the more uncertain the

previous state estimate, the larger the adjustment should be. Under

certain conditions, such as that the system dynamics are linear and

known and the noise is white and Gaussian, the Kalman filter [8]

is the optimal state estimator, as it is the unbiased estimator with

the lowest variance. It has therefore been proposed [9] that the

motor system could use a Kalman filter to determine its learning

rate. The optimal learning rate then equals the Kalman gain.

Three studies [10–12] found support for this hypothesis, as it was

observed that the learning rate increases when the error-signal

reliability or the uncertainty of the state estimate is increased.

These findings were obtained by averaging estimated learning

rates over large numbers of trials.

If the motor system uses a Kalman filter to determine its

learning rate, the learning rate would not only be optimal on

average, but it would be optimal in every individual movement.

The aim of this study is to determine whether this is the case. The

standard way to estimate learning rates is to use perturbations that

disturb the motor performance, and to analyze how motor

planning changes in response to induced errors. However, subjects

in this paradigm face a dual task as they should both estimate the

source of each error and determine an appropriate correction

[13,14]. For self-generated errors resulting from inaccurate motor

planning, a large correction would be appropriate, but for errors
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that have an external origin such as an incidental gust of wind, no

correction should be made. Since a subject’s estimate of the error

source may vary from trial to trial, it is difficult to obtain accurate

estimates of the learning rate in this paradigm. We therefore used

a method that did not involve perturbations, so that all errors were

self-generated. Subjects simply made a series of reaching

movements to a fixed target. They could not see their hand

during the movement, but they received visual feedback about

their error immediately after each movement. This allowed them

to translate the observed error into a planning correction for the

next movement. There were three different levels of error-signal

reliability.

It is not possible to obtain reliable estimates of the learning rate

for individual movements because effects of motor noise cannot be

distinguished from planning corrections in individual movements.

It is nevertheless possible to test whether subjects used a Kalman

filter for every individual movement in a series to the same target,

as the Kalman filter makes specific predictions for the serial

correlations of movement endpoints, and for how the mean

squared movement error will evolve during a series.

We will first present the results of the experiment. We will then

show how the Kalman filter can be used to make optimal planning

corrections in this paradigm. Next, we will demonstrate that the

observed behaviour is not consistent with the predictions of the

Kalman filter. Finally, we will show that the data can be explained

by a simpler model in which the learning rate is fixed during a

session, but varies with the error-signal reliability.

Results

Subjects made 30 successive movements to the same target in

each series. One session consisted of 24 series of the same

condition, each with a different target. All targets were located at

10 cm distance from a fixed start location, in equally spaced

directions. Subjects could not see their hand during the

movement, but they received visual information about the

movement endpoint immediately after each movement (see

Fig. 1A for the setup). The visual endpoint feedback depended

on the experimental condition. In condition H (high error

reliability), a small red disc was shown exactly at the actual

endpoint location (Fig. 1B). In condition M (medium error

reliability), subjects saw a cloud of 15 red circular dots, drawn from

a circular Gaussian distribution centred on the actual endpoints

(Fig. 1C). Subjects received no visual information about their

endpoints in condition L (low error reliability, Fig. 1D).

Observed Error Correction
Figure 2A shows all the endpoints of a representative subject in

condition H. Three effects stand out, and these were found for all

subjects. First, movements were on average quite accurate.

Second, the endpoint variability was anisotropic. Variability in

the Extent component (the component parallel to the vector from

the start location to the mean endpoint of the series) was generally

larger than that in the Direction component (the component

orthogonal to the Extent component), which is consistent with

earlier observations [15,16]. Third, the endpoint of the first

movement to a target (marked by asterisks) often differed

substantially from later endpoints.

The overall picture in condition M (Fig. 2B) is quite similar to

that in condition H. All three points mentioned above apply also

to this condition. The last two apply also to condition L (Fig. 2C),

but the first point does not apply here as movements were often

systematically biased. The subject whose endpoints are shown in

Figure 2 tended to systematically undershoot the targets, but this

was not observed for all subjects. Some consistently undershot

Figure 1. Experimental setup and error-signals in each condition. A Subjects were seated at a table, and had no direct vision of the table and
their arm because that was blocked by a black cloth (not shown) and a mirror that was placed midway between the tabletop and a projection screen.
An LCD projector (not shown) projected images onto this screen. When the subject looked in the mirror, he saw the images at the location of the
tabletop. In the shown situation, the subject just started the movement from the start position (pink disc) to the target (yellow disc). B In condition H
(high error reliability), a red disc was shown at the movement endpoint immediately after the movement end was detected. In addition, a score was
displayed that decreased with the distance from the endpoint to the target. C In condition M (medium error reliability), a cloud of 15 dots, drawn
from a Gaussian centred on the actual endpoint, was shown immediately after the movement. D In condition L (low error reliability), subjects
received no visual feedback about their movement endpoints.
doi:10.1371/journal.pone.0049373.g001
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the targets, others produced mainly overshoots, but for the

majority the pattern was more complicated, with overshooting

for some targets and undershooting for others. In addition, all

subjects displayed directional errors for some targets. The

endpoint variance (the sum of the variance of the Extent and

Direction components) did not significantly differ between

conditions (repeated measures ANOVA: F(2,14) = 3.21; p = 0.07).

The mean endpoint variance was 86 mm2; the mean variances

for the Extent and Direction components were 67 mm2 and

18 mm2, respectively.

In all conditions, the endpoint of the first movement to a target

often differed considerably from later ones. This suggests that

planning of the first movement to a target was often inaccurate.

The fact that only the first endpoint differed implies that the error

in this movement was used to adjust planning of the next

movement. In conditions H and M, the error signal was visual,

and it was reliable enough to reduce the error. In condition L, the

error signal arose by comparing the felt finger location to the seen

target position. Idiosyncratic biases in the proprioceptive sense of

finger location relative to visual targets [17,18] will have caused

the sizeable and subject-dependent constant errors in this

condition. Remarkably, for the subject whose data are shown in

Figure 2C, the first movement to a target was often quite accurate,

whereas all later ones were less accurate. This was observed for

more subjects. Apparently, motor planning was initially relatively

accurate, but the proprioceptive-visual bias was so large that later

movements had to be less accurate to give subjects the feeling that

they hit the target.

Learning curves were constructed to quantify how quickly

subjects shifted their endpoints in the beginning of a series towards

the steady-state position. We calculated the Mahalanobis distance

(‘‘the squared number of standard deviations that an endpoint

differs from the mean endpoint of the series’’, see Methods) for

every endpoint, and plotted the mean Mahalanobis distance as a

function of the movement number in the series. Figure 3A shows

that subjects corrected their initial errors in condition H in a

couple of movements. Fitting exponentials to the learning curves

produced an estimated time constant of these corrections of

0.8160.25 movements (weighted average across subjects 695%

confidence interval). Figure 4 shows that the large initial errors

were not restricted to the first series in a session, but they occurred

in all series of a session.

In conditions M and L, subjects also changed their endpoints in

a couple of movements (Figs. 3G, M), but the rate at which this

occurred decreased with increasing error uncertainty (Fig. 5A). A

repeated measures ANOVA in which the time constants of

individual subjects were weighted with the inverse of the squared

width of their confidence interval confirmed that the time

constants varied significantly between conditions (F(2,35) = 15.32;

p,0.0001). Another, subtle, difference between the learning

curves is that the end is as good as flat in conditions H and M,

whereas it rises in condition L. In all conditions, initial movements

could be inaccurate in all series of a session (Fig. 4).

The observed serial correlations are plotted in Figures 3D,J,P.

We will first focus on the lag 1 autocorrelations (ACF(1)s), which

express the statistical relationship between the endpoints of

consecutive movements. The ACF(1) is positive when the end-

points of consecutive movements tend to be close together relative

to the overall variability, whereas it is negative when they tend to

be far apart, on opposite sides of the mean endpoint. It is zero

Figure 2. Examples of endpoints in each condition. The start
position (pink disc), the targets (yellow discs), all the endpoints (small
dots) and their 95% confidence ellipses of a representative subject (SG).
Red and blue colours are used for the endpoints for different targets in

alternating order. Asterisks denote the endpoints of the first movement
to a target. A Condition H. B Condition M. C Condition L.
doi:10.1371/journal.pone.0049373.g002
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when consecutive endpoints are statistically independent of one

another. The ACF(1) of both the Extent and Direction compo-

nents was close to zero in condition H (Fig. 3D). It is not possible

to test whether they were significantly different from zero because

the estimation of autocorrelations from short time series is

fundamentally biased [19,20]. Both ACF(1)s are about 0.1 in

condition M, and about 0.3 in condition L (see also Fig. 5B). A 3

(conditions: H, M, L)62 (component: Extent, Direction) repeated

measures ANOVA showed that the ACF(1) varied between

conditions (F(2,14) = 56.72; p,0.00001) but not between compo-

nents (F(1,14) = 0.45; p.0.5), and there was no significant interac-

tion between condition and component (F(2,14) = 0.91; p = 0.43).

Post-hoc Tukey’s honestly significant difference tests showed that

the autocorrelation differed significantly between any pair of

conditions (all p#0.001). The lag 1 cross-correlations, which

express the statistical relation between the Extent component of

one endpoint and the Direction component of the previous or next

endpoint, are approximately zero in all conditions. This suggests

that in all conditions, an error in one component did not lead to a

corrective adjustment in the planning of the other component.

In condition L, the autocorrelations at several lags greater than

1 are also positive (Fig. 3P). These correlations express the

statistical relationship between the endpoints of movements that

did not follow each other directly, but where one or more

movements were made in between. However, these positive values

reflect not only the genuine correlations between these endpoints,

but also the linear dependence on the endpoints of the intervening

movements. The partial autocorrelation function at lag k (PACF(k))

is the autocorrelation between the endpoints of movements t and t

– k after their linear dependence on the intervening endpoints has

been removed. Partial autocorrelations of the observed endpoints

are shown in Figures 6A, D, G. The most striking difference with

the autocorrelations in Figure 3D, J, P is that the partial

autocorrelations decrease more rapidly, and are close to zero

already at lag 2. The negative PACFs for lags above 3 are an

artefact of using short time series (see section EPAPC model:

predictions).

In summary, we found that both the time constant of the

learning curve and the lag 1 autocorrelation of the endpoints

increased with increasing error-signal uncertainty. Since the time

constant and the autocorrelation increase when smaller error

corrections are made, these results confirm the earlier finding

[11,12] that learning slows down when the error-signal reliability is

decreased.

Kalman Filter: Model
We used the Kalman filter to determine the optimal planning

correction for individual movements. The task of motor planning

is to generate motor commands that will bring the finger to the

target. The substantial errors in the first movement to a target

(Figure 2) indicate that this is not a trivial task. Observed

movement errors are therefore used to improve motor planning.

The central idea of using the Kalman filter for this process is that

the brain estimates the endpoint that will result from a planned

motor command. This estimate is updated after observing the

actual endpoint and this updated estimate is then used to improve

planning of the next movement. It is therefore important to

distinguish the actual movement planning and execution signals in

the subject’s nervous system from the brain’s estimates of their

resulting endpoints. First consider the actual movement planning

and execution signals.

Let m
(t)
pl be the endpoint that would result if the centrally

planned motor command of movement t would directly drive the

movement without being corrupted by noise. We will refer to this

as the planned aim point [21]. Actual motor commands are however

corrupted by noise in the relay of the motor command by

motoneurons and in the conversion into mechanical forces in

muscles [16,22,23]. We will refer to this as execution noise. Its

consequence is that the actual endpoint x(t) will differ from the

planned aim point:

x(t)~m
(t)
pl zr(t)

ex, r(t)
ex*N 0, Sexð Þ ð1Þ

where r(t)
ex is a random vector that represents the effect of

execution noise, which is drawn from a zero-mean Gaussian with

covariance matrix Sex. We assume that the sensed endpoint ~xx(t) is a

Figure 3. Observed and predicted learning curves and serial correlations for each condition. A Observed learning curve in condition H.
The shaded area represents the between-subject standard deviation. The dashed line at 2 shows the expected value if all endpoints are drawn
independently from an identical Gaussian. B Learning curve in condition H as predicted by the Kalman filter. The shaded area indicates the between-
subjects standard deviation, as predicted by this model. Inset: Kalman gain as a function of trial number. Blue: Extent component, red: Direction
component. C Learning curve in condition H as predicted by the EPAPC model. D Observed serial correlations in condition H. Error bars denote the
between-subject standard deviation. ‘Ext’ and ‘Dir’ refer to the Extent and Direction component, respectively. E Serial correlations in condition H as
predicted by the Kalman filter. Error bars denote the between-subjects standard deviation, as predicted by this model. F Serial correlations in
condition H as predicted by the EPAPC model. G–L, The same as in A–F, but now for condition M. M–R, The same as in A–F, but now for condition L.
doi:10.1371/journal.pone.0049373.g003

Figure 4. Mahalanobis distance of the first trial in a series as a
function of the series number. Colored lines represent the average
(across all subjects) per condition, whereas the black line denotes the
mean of all conditions. The dashed line at 2 shows the expected value if
the endpoint in the first trial does not, on average, differ more from the
mean endpoint than the endpoints in later trials.
doi:10.1371/journal.pone.0049373.g004
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read-out of the actual endpoint that is corrupted by sensory noise:

~xx(t)~x(t)zr(t)
sens, r(t)

sens*N bsens, Ssensð Þ ð2Þ

where r(t)
sens is a random vector that represents the effect of

sensory noise. It is drawn from a Gaussian with mean bsens that can

be non-zero to account for the possibility that sensed errors are

biased, such as in condition L (this is not a problem for the

Kalman filter described below; it just means that the mean

endpoint will be biased by an amount 2bsens).

We next assume that the planned motor command of the

movement just executed will serve as a basis for the planning of the

next movement, while a (yet to be determined) planning correction

c(t) is added based on the observed error in the previous movement.

Since the generation of the new motor command is a stochastic

process [24], the effect of planning noise r
(t)
pl is added as well:

m
(t)
pl ~m

(t{1)
pl zc(t)zr

(t)
pl , r

(t)
pl *N 0, Spl

� �
ð3Þ

Planning, execution and sensory noise are assumed to be white and

independent of one another.

The actual endpoint is unknown to the subject. It can be

eliminated from the above equations to yield:

m
(t)
pl ~m

(t{1)
pl zc(t)zr

(t)
pl , r

(t)
pl *N 0, Spl

� �
ð4aÞ

~xx(t)~m
(t)
pl zr(t)

exzr(t)
sens, r(t)

exzr(t)
sens*N bsens, SexzSsensð Þ ð4bÞ

The first equation can be viewed as a state equation with state

m
(t)
pl , and the second equation is an output equation.

We will now use the Kalman filter to determine the planning

corrections c(t). The Kalman filter recursively estimates the

planned aim points m
(t)
pl by optimally combining predictions and

observations. The Kalman filter’s time update equations give the a

priori (or predicted) planned aim point and the a priori error

covariance matrix P(t) when the new movement has been planned

(with known correction) but before its endpoint is observed:

m̂m
(t){
pl ~m̂m

(t{1)
pl zc(t) ð5aÞ

P(t){~P(t{1)zSpl ð5bÞ

Hats denote estimates and the minus symbol indicates that these

are a priori values. The measurement update equations give the a

posteriori values that are obtained after the endpoint is observed:

K(t)~P(t){ P(t){zSexzSsens

� �{1 ð6aÞ

m̂m
(t)
pl ~m̂m

(t){
pl zK(t) ~xx(t){m̂m

(t){
pl

� �
ð6bÞ

P(t)~ I{K(t)
� �

P(t){ ð6cÞ

Here, K(t) is the Kalman gain that optimally weights the

observed endpoint relative to the a priori estimate, m̂m
(t)
pl is the

estimate of the planned aim point in movement t after its endpoint

has been observed, I is the identity matrix, and 21 denotes the

matrix inverse.

The planning correction for the next movement should correct

for the difference between the estimated planned aim point and

the target location xT:

c(tz1)~xT{m̂m
(t)
pl ð7Þ

When we substitute this expression in the first time update

equation (Eq. 5a), we obtain:

m̂m
(t){
pl ~m̂m

(t{1)
pl zxT{m̂m

(t{1)
pl ~xT ð8Þ

This equation shows that for this planning correction, every

movement is planned such that it is expected to be accurate. The

second measurement update equation (Eq. 6b) then becomes:

m̂m
(t)
pl ~xTzK(t) ~xx(t){xT

� �
ð9Þ

Figure 5. Time constants, lag 1 autocorrelations and learning rates for each condition. A Weighted average (across all subjects) of the
estimated time constants, with error bars representing 95% confidence intervals. B Mean ACF(1) of the Extent and Direction components. Error bars
represent the standard error in the mean. C Mean learning rates for the Extent and Direction components, as determined by fitting the EPAPC model.
Error bars represent the standard error in the mean.
doi:10.1371/journal.pone.0049373.g005
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This equation shows that after the endpoint has been observed,

the estimated planned aim point of the movement just executed is

corrected by an amount that is proportional to the sensed error

(the difference between the sensed endpoint and the target

location). When we substitute this into Eq. 7, we find that the

planning correction is equal to:

c(tz1)~K(t) xT{~xx(t)
� �

ð10Þ

The planning correction is thus proportional to the sensed error,

and the Kalman gain K(t) acts as the learning rate that determines

the proportion of the error that is corrected for. When we combine

all the results, we can rewrite the equations for the actual

movement planning and execution (Eq. 4) as:

m
(t)
pl ~m

(t{1)
pl zK(t{1) xT{~xx(t{1)

� �
zr

(t)
pl , r

(t)
pl *N 0,Spl

� �
ð11aÞ

~xx(t)~m
(t)
pl zr(t)

exzr(t)
sens, r(t)

exzr(t)
sens*N bsens, SexzSsensð Þ ð11bÞ

where the Kalman gain is determined recursively according to

equations 5 and 6.

To complete the specification of the Kalman filter, we have to

choose the initial values of the state estimate and its error

Figure 6. Partial autocorrelation functions (PACFs). A Mean PACFs observed in condition H. Error bars denote the across-subjects standard
deviation. B PACFs predicted by the EPAPC model for series of 30 movements in condition H. Error bars denote the across-subjects standard
deviation as predicted by the model. C PACFs predicted by the EPAPC model for series of 1000 movements in condition H. D–F Same as A–C but
now for condition M. G–I Same as A–C but now for condition L.
doi:10.1371/journal.pone.0049373.g006
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covariance. The planned aim point of the first movement in a

series depends on the initial state estimate. The fact that the first

movement could be quite inaccurate in each series (Figs. 2 and 4)

suggests that the initial state estimate had a relatively large

uncertainty. We therefore assumed that the Kalman filter was

reset at the start of each new series. We modelled the initial error

covariance as:

P(1){~S0 ð12Þ

where S0 is a covariance matrix, that, in order to produce

relatively large errors, has elements that exceed those of Spl and

Sex. Since there was no systematic pattern in the direction of the

initial errors (they could be undershoots and overshoots, and the

direction could be off in either direction), we initialized the state

estimate as:

m̂m
(1){
pl ~xT ð13Þ

As a result, the first planned aim point was:

m
(1)
pl ~xTzr

(1)
pl zr0, r0*N 0, S0ð Þ ð14Þ

where r0 is a random vector that reflects the uncertainty of the

initial state estimate. As a result of this large initial uncertainty, the

Kalman gain, and therefore the learning rate, will initially be large

and then decrease to stabilize at a lower value.

The model assumes that the dynamics of the system are linear,

that all noise is Gaussian, and that planning corrections are

proportional to the sensed error. Previous studies [10,25] have

shown that the assumptions of linearity and Gaussian noise

capture the trial-by-trial behaviour in repeated reaching move-

ments very well, and that including nonlinearities or deviations

from normality does not lead to improvements in explaining

observed reaching behaviour. The assumption of proportional

planning corrections is also reasonable because errors in the

present study were generally smaller than 2 cm, and for errors of

this size, corrections have been shown to be proportional to errors

[14].

Kalman Filter: Predictions
We tested whether the Kalman filter can explain the data by

evaluating whether it can reproduce the observed learning curves

and autocorrelations. The predictions depend on the various

covariance matrices defined above. Since it is not possible to

obtain accurate estimates of all of these matrices, we followed a

different approach in which we essentially determined whether

any set of values of the covariance matrices could reproduce both

the observed learning curves and the autocorrelations. To reduce

the number of free parameters, we assumed that all covariance

matrices were diagonal (this is justified by the observation that all

endpoint ellipses had their major axis roughly aligned with the

movement direction), we used literature values or estimates

obtained in a control experiment for the error-uncertainty

covariance matrix Ssens (see Methods for details), and we assumed

that all the other covariance matrices (Spl, Sex and S0) differed

from one another by a scaling factor. This assumption was

motivated by the finding of Cheng and Sabes [25] who estimated

matrices corresponding to Spl and Sex directly from data, and

found that both were anisotropic with a larger variance in the

Extent than in the Direction component. Specifically, we

parameterized these matrices as: Spl = swSmot, Sex = s(1– w)Smot

and: S0 = csSmot, where Smot = [4 0; 0 1] mm2 is a prototype

covariance matrix to which Spl, Sex and S0 are proportional.

Parameter s scales all these matrices relative to Ssens, w determines

the relative size of the planning and execution covariance

matrices, and c scales the initial state-estimate uncertainty. We

assumed that the (1, 1) element of Smot was 4 times as large as the

(2, 2) element because the ratio of Extent to Direction variance was

about 4 for all subjects and in all conditions. Hence, there were

three free parameters: s, w and c. For condition H, we assumed

that the error-signal uncertainty was negligible (Ssens = 0). Since

both the Mahalanobis distance and the autocorrelation are

standardized values that are independent of the magnitude of

the endpoint variability, the predictions were independent of the

value of s for this condition. As a result, there were only two free

parameters (w and c) for this condition.

For each subject and each condition, we determined the values

of the free parameters that minimized the difference between the

predicted and observed values of the initial value of the learning

curve, the learning-curve time constant, and the lag 1 and lag 2

autocorrelations of the Extent and Direction component (see

Methods for details). Table 1 shows the means (of all subjects) and

standard errors of the best parameter estimates. The second

column of Figure 3 shows the predictions of the Kalman filter for

these parameter values. The model reproduces the increase of the

time constant and the ACF(1)s with decreasing error-signal

reliability. However, the Kalman filter corrects faster for the

initial error than the subjects did, as the time constant predicted by

the Kalman filter was for each condition significantly shorter than

that estimated from the data (0.57 vs. 0.81, 0.65 vs. 1.04, and 0.80

vs. 1.29 movements for conditions H, M and L, respectively; all

p,0.05, two-tailed weighted t tests: [26]). This suggests that the

actual corrections early in the series were smaller than those

generated by the Kalman filter. This could be related to the fact

that the Kalman filter initially has a large learning rate (Kalman

gain), which later decreases (see insets in Figs. 3B, H, N; where the

Kalman gain is plotted separately for the Extent and Direction

components).

The serial correlations predicted for condition H (Fig. 3E) agree

well with the observed ones (Fig. 3D). However, for conditions M

and L, the Kalman filter predicts that the ACF(1) is larger for the

Direction than for the Extent component (see Figs. 3K, Q). This is

a consequence of the fact that the planning and execution noise

covariance matrices are anisotropic, with a larger variance in the

Extent than in the Direction component, whereas the sensory

noise covariance matrices are isotropic (see Methods). As a result,

the ratio of measurement to process noise variance is larger for the

Direction than for the Extent component. This leads to a larger

Kalman gain for the Extent component (see insets of Figs. 3H, N),

which, in turn, leads to a smaller autocorrelation. Such a

difference was however not found in the data (see Figs. 3J, P).

Table 1. Best parameter estimates (means of all subjects 6

s.e.m.) for the Kalman filter.

Condition w s c

H 0.3560.09 – 2.7560.33

M 0.4560.10 17.660.7 2.5760.49

L 0.3260.08 8.363.5 7.8462.15

doi:10.1371/journal.pone.0049373.t001
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In summary, the Kalman filter predicts faster correction for

initial errors than observed and it predicts different autocorrela-

tions for the Extent and Direction component whereas the

observed ones do not differ. We conducted a sensitivity analysis to

examine whether these failures of the model can be the result of

incorrect assumptions in the parameterization of the covariance

matrices. In this analysis we repeated the analysis above several

times, where each time the value of one or two parameters was

doubled or halved. The parameters that were varied were: Smot,

the aspect ratio of Smot (the diagonal elements were varied such

that the ratio of the two diagonal elements was doubled or halved,

while their sum remained the same), Ssens, the aspect ratio of Ssens,

while we also varied the aspect ratios of Spl and Sex simultaneously

such that one aspect ratio was doubled while the other was halved.

We also considered the case that Spl was isotropic; here, we

assumed that Spl = swI, with I the identity matrix, whereas Sex =

s(1– w)Smot, as before. The variations of Ssens were not applicable to

condition H because we assumed Ssens = 0 for this condition. We

therefore examined the effect of Ssens being non-zero for this

condition.

Table 2 shows the results of the sensitivity analysis for condition

H. Both the parameter estimates and the corresponding time

constant and ACF(1)s are shown. This table shows that large

changes of Smot, Spl and Sex have very little effect on the time

constants and ACF(1)s, and the predicted time constant is always

well below the observed one. The only parameter change that

leads to a time constant near the observed one is assuming a non-

zero Ssens (last row of Table 2). However, the error-signal

uncertainty required for this (Ssens = 0.2Tr(Smot)I) is unrealistically

large: To obtain an endpoint variance matching the data

(86 mm2), we would need s < 14, which corresponds to Ssens <
[14 0; 0 14] mm2. In other words, the standard deviation in the

perceived size of an error of 7 mm (a typical error) would be

almost 4 mm. This is unrealistically large as subjects saw the target

and the endpoint simultaneously (see Fig. 1B).

The sensitivity analysis for condition M (Table 3) shows that

changing the parameters cannot solve the problems that the

predicted time constant is too short and that the predicted ACF(1)s

for the two components are different. This is also the case for most

parameters for condition L (Table 4), although it is possible to

obtain a correct time constant by doubling the ratio of sensory to

motor variance (by either doubling Ssens or halving Smot), while it is

possible to obtain correct ACF(1)s for the Direction and Extent

components by doubling the aspect ratio of Spl and halving that

of Sex.

In summary, the sensitivity analysis demonstrates that the

failure of the Kalman filter to explain the data cannot be the result

of making incorrect assumptions about the underlying covariance

matrices for conditions H and M, whereas this model can explain

the results of condition L only if at least three parameters are

Table 2. Results of the sensitivity analysis for the Kalman filter
for condition H.

w c Time cst. ACF(1)Ext ACF(1)Dir

Observed 0.81 0.002 20.050

Baseline 0.35 2.75 0.56 20.042 20.043

Smot halved 0.35 2.75 0.57 20.042 20.043

Smot doubled 0.35 2.75 0.56 20.042 20.044

AR(Smot) halved 0.35 2.75 0.57 20.042 20.040

AR(Smot) doubled 0.35 2.75 0.56 20.041 20.042

AR(Spl) halved
AR(Sex) doubled

0.39 2.63 0.54 20.042 20.043

AR(Spl) doubled
AR(Sex) halved

0.30 2.94 0.59 20.041 20.041

Spl isotropic 0.40 2.29 0.59 20.042 20.042

Ssens = 0.2Tr(Smot).I 0.08 2.96 0.77 20.010 0.044

AR: aspect ratio.
For all of these simulations, we assumed s = 1.
doi:10.1371/journal.pone.0049373.t002

Table 3. Results of the sensitivity analysis for the Kalman filter
for condition M.

w s c Time cst. ACF(1)Ext ACF(1)Dir

Observed 1.04 0.102 0.103

Baseline 0.45 17.6 2.57 0.65 0.032 0.158

Smot halved 0.22 14.1 2.80 0.82 0.062 0.190

Smot doubled 0.66 17.5 2.39 0.57 0.013 0.121

AR(Smot) halved 0.56 17.4 2.45 0.62 0.058 0.124

AR(Smot) doubled 0.30 19.1 2.78 0.71 0.008 0.178

Ssens halved 0.63 17.5 2.36 0.58 0.011 0.115

Ssens doubled 0.22 14.1 2.80 0.80 0.063 0.190

AR(Ssens) halved 0.39 18.9 2.69 0.67 0.003 0.170

AR(Ssens) doubled 0.49 16.5 2.58 0.65 0.063 0.130

AR(Spl) halved
AR(Sex) doubled

0.55 17.4 3.02 0.60 0.039 0.217

AR(Spl) doubled
AR(Sex) halved

0.52 15.6 2.78 0.65 0.059 0.118

Spl isotropic 0.56 17.9 1.98 0.68 0.039 0.182

AR: aspect ratio.
doi:10.1371/journal.pone.0049373.t003

Table 4. Results of the sensitivity analysis for the Kalman filter
for condition L.

w s c Time cst. ACF(1)Ext ACF(1)Dir

Observed 1.29 0.314 0.295

Baseline 0.32 8.3 7.84 0.80 0.200 0.354

Smot halved 0.12 5.1 6.65 1.43 0.205 0.305

Smot doubled 0.73 13.9 3.61 0.59 0.147 0.340

AR(Smot) halved 0.38 7.6 4.61 0.85 0.255 0.335

AR(Smot)
doubled

0.39 10.6 7.53 0.78 0.179 0.419

Ssens halved 0.72 13.9 3.69 0.60 0.148 0.339

Ssens doubled 0.10 3.6 8.80 1.55 0.219 0.318

AR(Ssens) halved 0.50 12.9 4.21 0.74 0.148 0.410

AR(Ssens)
doubled

0.29 7.2 6.32 0.88 0.240 0.316

AR(Spl) halved
AR(Sex) doubled

0.76 15.0 4.46 0.62 0.241 0.427

AR(Spl) doubled
AR(Sex) halved

0.36 6.0 5.63 0.94 0.283 0.260

Spl isotropic 0.71 15.9 2.91 0.72 0.236 0.414

AR: aspect ratio.
doi:10.1371/journal.pone.0049373.t004
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changed to extreme values. Together, this suggests that the motor

system does not use a Kalman filter to determine the learning rate

in every individual movement.

EPAPC Model
To obtain a better understanding of the actual learning rate, we

compared the observed behaviour to the predictions of a second

model. This model is almost the same as the Kalman filter, but

rather than using the time-varying, optimal Kalman gain as

learning rate, it uses a learning rate B that is the same for all

movements in a condition, but that can vary between conditions:

m
(t)
pl ~m

(t{1)
pl zB xT{~xx(t{1)

� �
zr

(t)
pl , r

(t)
pl *N 0, Spl

� �
ð15aÞ

~xx(t)~m
(t)
pl zr(t)

exzr(t)
sens, r(t)

exzr(t)
sens*N bsens, SexzSsensð Þ ð15bÞ

The only difference between these equations and equation 11 of

the Kalman filter is that the Kalman gain has been replaced by

learning rate B. There are no state-estimation equations for this

model because it does not perform state estimation – there is just a

fixed learning rate for each level of error-signal reliability. Since

this model is an extension of the Planned Aim Point Correction

(PAPC) model used in [21], we will refer to it as the Extended

Planned Aim Point Correction (EPAPC) model. The model is

extended at two places: (1) it includes sensory noise, which is not

included in the PAPC model, and (2) the learning rate is a matrix,

whereas it is a scalar in the PAPC model. The inclusion of the

sensory noise is straightforward; error corrections are driven by

sensed rather than actual errors. The advantage of using a matrix

rather than a scalar learning rate is that it allows us to test whether

the learning rate is different for the Extent and Direction

components. We assumed that the learning rate B is a diagonal

matrix because all observed cross correlations were about zero.

EPAPC Model: Predictions
We tested the EPAPC model in the same way as the Kalman

filter: by examining whether it can reproduce the observed time

constants and autocorrelations. The same parameters w and s as

for the Kalman filter were used to parameterize Spl and Sex; c was

not a free parameter here, but was in each simulation chosen such

that it reproduced the observed initial value of the learning curve

(the resulting time constant and ACF(1)s were virtually indepen-

dent of this value in a wide neighbourhood around the value used).

The diagonal elements of B, Bext and Bdir, were the other free

parameters. The total number of free parameters was therefore

four (w, s, Bext and Bdir), but, to prevent overfitting, this number was

restricted to three for each condition. For condition H, s was not a

free parameter as the time constant and autocorrelations were

independent of this parameter. For conditions M and L, w was not

a free parameter, but its value was chosen the same as estimated

for condition H (0.197).

Table 5 shows the means (of all subjects) and standard errors of

the best parameter estimates. The last column of Figure 3 shows

the predictions of the EPAPC model, based on the mean (between

subjects) of the parameter estimates. Like the Kalman filter, this

model can explain that the time constant and ACF(1)s increase

with decreasing error-signal reliability. In addition, and contrary

to the Kalman filter, the EPAPC model can also explain the actual

values of the time constants, as the predicted time constants were

close to the observed ones (0.84 vs. 0.81, 0.95 vs. 1.04, and 1.33 vs.

1.29 movements, for condition H, M and L, respectively; all

p.0.5, two-tailed weighted t tests: [26]). This model also

reproduces the autocorrelations (compare Figs. 3F, L, R to Figs.

3D, J, P). Two-tailed t tests confirmed that none of the predicted

ACF(1)s differed significantly from the observed values (all p.0.1),

and that the predicted ACF(1) was not significantly different for

the Extent and Direction components (p.0.25 for each condition).

These results suggest that subjects used a fixed learning rate for

all trials in an experimental condition. The estimated learning

rates for the Extent and Direction component in condition H were

0.3360.03 and 0.4060.05 (mean of all subject 6 standard error),

respectively. These values were not significantly different (two-

sided paired t test: p = 0.29), which implies that the scalar learning

rate used in [21] was appropriate for this condition. For condition

M, the learning rates were 0.2960.04 and 0.3360.04, which also

did not differ significantly from each other (p = 0.48). For condition

L, the learning rates were 0.1560.03 and 0.2960.06, which were

significantly different (p = 0.006). Learning rates decreased with

increasing error-signal uncertainty (see Fig. 5C).

We conducted a sensitivity analysis to determine how the

estimates of the learning rates depend on the assumptions made

regarding the covariance matrices. We varied the same parameters

as for the sensitivity analysis of the Kalman filter. For conditions M

and L we also halved and doubled the assumed value of w.

Tables 6, 7 and 8 show that the effects of all these variations on the

estimated learning rates are relatively small. In particular, the

dependence of the learning rates on the error-signal reliability and

on the component considered (Extent vs. Direction) remains the

same in all cases considered.

Table 5. Best parameter estimates (means of all subjects 6

s.e.m.) for the EPAPC model.

Condition w s Bext Bdir

H 0.2060.05 – 0.3360.03 0.4060.05

M – 13.363.5 0.2960.04 0.3360.04

L – 7.262.0 0.1560.03 0.2960.06

doi:10.1371/journal.pone.0049373.t005

Table 6. Results of the sensitivity analysis for the EPAPC
model for condition H.

Bext Bdir w Time cst. ACF(1)Ext ACF(1)Dir

Observed 0.81 0.002 20.050

Baseline 0.33 0.40 0.197 0.83 0.005 20.049

Smot halved 0.33 0.40 0.195 0.85 0.004 20.048

Smot doubled 0.33 0.40 0.195 0.84 0.006 20.050

AR(Smot) halved 0.33 0.40 0.195 0.84 0.006 20.050

AR(Smot)
doubled

0.33 0.40 0.195 0.84 0.005 20.049

AR(Spl) halved
AR(Sex) doubled

0.27 0.50 0.155 0.79 20.006 20.026

AR(Spl) doubled
AR(Sex) halved

0.42 0.32 0.252 0.83 0.015 20.063

Spl isotropic 0.29 0.53 0.369 0.82 20.017 20.042

For all of these simulations, we assumed s = 1.
AR: aspect ratio.
doi:10.1371/journal.pone.0049373.t006
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We will now look in more detail at some other aspects of the

observed learning and compare these to the predictions of the

EPAPC model. Figure 3 shows that the model reproduces also

the final part of the learning curves, i.e., the flat end in conditions

H and M, and the rising end in condition L. This is related to the

size of the autocorrelations and to using the Mahalanobis distance

to construct learning curves. For ACF(1)s close to zero (conditions

H and M), consecutive endpoints are (close to) independent of one

another. The mean Mahalanobis distance will therefore be the

same for all but the first few movements in a series, leading to a flat

last part of the learning curve. In contrast, for ACF(1)s

substantially greater than zero (condition L), endpoints of

consecutive movements are relatively close together. The end-

points within a series will therefore ‘drift’, somewhat like a random

walk. As a result, the first and last endpoint of a series will on

average be further away from the mean than endpoints in the

middle of the series. The expected Mahalanobis curve is therefore

U-shaped, where the large errors in the beginning of the series

make it asymmetric. This effect explains the rising end of the

learning curve in condition L.

Figures 6A, D, G show that in all conditions the observed partial

autocorrelations (PACFs) are close to zero for lags 2 and 3, while

they tend to be negative for larger lags. Figures 6B, E, H show that

the PACFs predicted by the model follow a similar pattern. This

indicates that the model also reproduces the longer-range

interactions between movements in a series. It is however

surprising that the PACFs at large lags are negative, because the

model includes corrections based on the error in only the previous

movement, not in movements longer ago. The negative PACFs

could be an artefact of estimating them from relatively short time

series [19,20]. To examine whether this is the case, we simulated

the model also for hypothetical experiments with series of 1,000

movements. The PACFs predicted for these long series (Figs. 6C,

F, I), which can be considered as close approximations of the ‘true’

PACFs, approach zero, which confirms that the negative PACFs at

lags greater than 3 are an artefact of using short time series.

A comparison of the middle and right columns of Figure 6

reveals that the autocorrelations at lag 1 also depend on the series

length. Short time series lead to underestimates of the PACF(1) in

all conditions. Since at lag 1, PACFs are equal to ACFs, this

suggests that all ACF(1)s in Figure 3 represent underestimates of

the actual ACF(1). To see how the estimated ACF(1) depends on

the number of movements in a series and on the error-signal

uncertainty, we simulated the model for hypothetical experiments

with series in the range of 10 to 1,000 movements (see Fig. 7). The

estimated ACF(1) increases with error uncertainty and with series

length. For the series of 30 movements used here (black dashed

line in Fig. 7), all curves are still rising considerably. Thus, different

estimates of the ACF(1)s would have been found if shorter or

longer series had been used. Figure 7 thus highlights the

importance of taking the series length into account when

interpreting observed autocorrelations. We stress that this effect

does not reflect different error correction behaviour for different

series lengths; it only reflects series-length dependent biases in the

estimation of autocorrelations. Note that this is not a problem for

testing the models, as ACF(1)s of both real and simulated data are

subject to the same bias.

Optimality of the Learning Rates
Although we found that the learning rate was not optimal for

each individual movement (i.e., the data are not consistent with

the Kalman filter), it is possible that learning rates were optimal

under the restriction that they were the same for all trials of the

same condition, as in the EPAPC model. With optimal, we mean

that they had the value that minimized the endpoint variance. To

examine whether this was the case, we derived an expression for

the endpoint variance Var(x) as predicted by this model (see

Methods):

Var(x)~Tr B(2I{B)ð Þ{1 Splz2BSexzB2Ssens

� �� �
ð16Þ

Table 7. Results of the sensitivity analysis for the EPAPC
model for condition M.

Bext Bdir s Time cst. ACF(1)Ext ACF(1)Dir

Observed 1.04 0.102 0.103

Baseline 0.29 0.33 13.3 0.95 0.058 0.084

w halved 0.21 0.25 10.9 1.21 0.039 0.066

w doubled 0.41 0.43 19.1 0.75 0.089 0.111

AR(Smot) halved 0.34 0.33 10.6 0.89 0.029 0.066

AR(Smot)
doubled

0.27 0.34 17.0 0.96 0.073 0.104

Ssens halved 0.28 0.31 10.6 1.00 0.060 0.069

Ssens doubled 0.30 0.35 16.5 0.91 0.061 0.108

AR(Ssens) halved 0.27 0.34 14.9 0.97 0.071 0.091

AR(Ssens)
doubled

0.30 0.29 12.1 0.97 0.058 0.087

AR(Spl) halved
AR(Sex) doubled

0.24 0.49 15.5 0.86 0.063 0.117

AR(Spl) doubled
AR(Sex) halved

0.34 0.20 11.9 0.99 0.060 0.043

Spl isotropic 0.24 0.37 10.2 1.01 20.016 0.081

AR: aspect ratio.
doi:10.1371/journal.pone.0049373.t007

Table 8. Results of the sensitivity analysis for the EPAPC
model for condition L.

Bext Bdir s Time cst. ACF(1)Ext ACF(1)Dir

Observed 1.29 0.314 0.295

Baseline 0.15 0.29 7.2 1.32 0.249 0.293

w halved 0.17 0.36 3.1 1.25 0.196 0.359

w doubled 0.20 0.28 18.8 1.21 0.317 0.298

AR(Smot) halved 0.17 0.27 5.6 1.30 0.249 0.261

AR(Smot)
doubled

0.15 0.29 10.5 1.36 0.242 0.319

Ssens halved 0.15 0.27 6.0 1.35 0.234 0.234

Ssens doubled 0.15 0.28 11.6 1.38 0.255 0.321

AR(Ssens) halved 0.15 0.29 8.4 1.37 0.237 0.308

AR(Ssens)
doubled

0.17 0.28 5.8 1.28 0.247 0.269

AR(Spl) halved
AR(Sex) doubled

0.14 0.34 15.8 1.25 0.209 0.308

AR(Spl) doubled
AR(Sex) halved

0.21 0.26 2.9 1.20 0.298 0.324

Spl isotropic 0.23 0.41 3.2 1.08 0.176 0.352

AR: aspect ratio.
doi:10.1371/journal.pone.0049373.t008
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where Tr denotes the matrix trace. This equation can be written as

the sum of variances of the Extent and Direction components (see

Eq. 27 in Methods). Figure 8 shows, for each condition, the

predicted variance as a function of the learning rates in these two

dimensions. The variance differs between conditions, but for each

condition the variance is large for very small learning rates of each

component, it increases also for large values and it reaches a

minimum for intermediate values. For very small learning rates,

corrections are too small, so that changes of the planned aim point

are mainly driven by planning noise, leading to a large variance.

For large learning rates, corrections are too large, overshooting the

target, also giving rise to a large variance. For intermediate

learning rates, the deleterious effects of small and large learning

rates cancel, resulting in a smaller variance. The positions of the

minima can be found in closed form (see Eq. 29 in Methods), and

are indicated in Figure 8 in red. The optimal learning rate

decreases with increasing error uncertainty for both components.

For zero error uncertainty (condition H), the optimum occurs for

the learning rate for which the autocorrelation vanishes [21]. If

there is finite error uncertainty (conditions M and L), the variance

of the sensed endpoints is minimal for the learning rate for which

the autocorrelation of the sensed endpoints vanishes. This is also the

learning rate that minimizes the variance of the actual endpoints

(this variance is a fixed amount Tr(Ssens) smaller than that of the

sensed endpoints). The autocorrelation of the actual endpoints is

positive for this learning rate.

The learning rates estimated from the data (indicated in Figure 8

in white) are close to the optimal ones in conditions H and M, for

both the Extent and Direction component. In contrast, the

learning rates of both components differed from the optimal ones

in condition L. Whereas the EPAPC model (and also the Kalman

filter, see Fig. 3N) predicts a larger learning rate for the Extent

than for the Direction component, the data suggest the converse.

It is surprising that learning rates were near-optimal in two

conditions, but not in the third. This could be a result of drift in

the proprioceptive sense of hand location in condition L. Although

care was taken to minimize such drift by giving subjects visual

feedback about their finger location at the beginning of each trial

[27], there could have been some drift in the felt hand location at

the end of the movements. Drift leads to a positive autocorrelation,

and therefore to an underestimate of the learning rate. This could

explain why the observed Bext (0.15) was smaller than the optimal

one (0.23). To check whether this was the case, we regressed for

each series the Extent and Direction components of the endpoints

against the trial number. We made use of the finding that

proprioceptive drift has, per subject, a fixed direction [27,28] to

separate genuine drift from the effects of random endpoint

variations that can also lead to non-zero regression slopes. To this

end, we fitted for each subject the regression slopes b for the 24

target directions h to the function b(h) = p1+ p2 sin(h) + p3 cos(h).

Here, p1 represents drift that all series have in common, such as an

increasing Extent, whereas p2 and p3 account for drift that is

constant in external space, such as a rightward drift. The drift

Figure 7. Estimated lag 1 autocorrelations as a function of the
series length. The curves represent the estimated ACF(1) of the Extent
and Direction components, as found by simulations for a range of series
lengths for each experimental condition. The black dashed line
indicates the series length used in the experiment (30).
doi:10.1371/journal.pone.0049373.g007

Figure 8. Endpoint variance (mm2) as a function of the learning rates according to the EPAPC model. Endpoint variance (Eq. 28) is
plotted as a function of the learning rates in the Extent and Direction component. The best estimates (mean of all subjects) of the model parameter
were used to generate these plots. The value of s that was estimated for condition M was used for all conditions. Variances exceeding 280 mm2 are
shown in black. White: observed learning rates. Error bars represent standard errors. Red: the optimal learning rates that minimize the variance (Eq.
29). The error bars herein were determined from the uncertainty in the parameter estimates. A Condition H. B Condition M. C Condition L.
doi:10.1371/journal.pone.0049373.g008
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captured by this fit was subtracted from the actual endpoints, after

which the whole analysis was repeated. This led to estimated

learning rates of 0.1660.03 and 0.3060.06 for Extent and

Direction, respectively. These values differ only marginally from

the ones obtained without drift correction, and they differ

substantially from the optimal ones. This demonstrates that

proprioceptive drift cannot explain the difference between

observed and optimal learning rates in condition L.

Discussion

We analyzed the time-series statistics of repeated reaching

movements with different levels of error-signal reliability to

determine the learning rate used by the motor system for updating

motor planning on the basis of observed errors. We found that the

learning rate increases with increasing error-signal reliability,

which agrees with the results of earlier studies [11,12] and with the

predictions of the Kalman filter. However, the Kalman filter

cannot explain the learning rate of every individual movement,

because learning at the beginning of a series was not as fast as

predicted by this model, and the learning rate of the Extent and

Direction components did not differ in the predicted way. In

contrast, the data were consistent with the EPAPC model, in

which the learning rate is fixed for all movements with the same

error-signal reliability. Moreover, these fixed learning rates were

optimal for minimizing the endpoint variance for two levels of

error-signal reliability but not for the lowest.

One could argue that the comparison between the Kalman filter

and the EPAPC model is not fair because the EPAPC model had

one free parameter more. However, we parameterized the

Kalman filter such that it had the highest possible number of

free parameters (three): The variance of the process noise, of the

measurement noise and of the initial state estimate fully determine

the time constant of the learning curve and the steady-state lag 1

autocorrelation. The fact that this model is unable to reproduce

both the time constant and the autocorrelation simultaneously

demonstrates that subjects cannot have used a Kalman filter to

determine the learning rate in every individual trial. This is

confirmed by the sensitivity analysis, as this analysis showed that

the Kalman filter is also unable to reproduce the data when the

underlying variances are varied by large amounts. Extending the

Kalman filter from a single-state to a two-state model in which

the two states have different learning and retention rates [29]

cannot solve these problems either because single-state and two-

state models are identical in the absence of perturbations [21].

Since the Kalman filter is the optimal state estimator, we conclude

that subjects did not choose learning rates that would produce the

smallest possible mean squared endpoint error for every move-

ment. Instead, their performance was well modelled by the

EPAPC model. This model differs from the Kalman filter in two

respects: it uses a fixed learning rate (for a given level of error-

signal reliability), and it does not automatically optimize the

learning rate. We will now discuss these differences.

We first emphasize that we cannot exclude that learning rates

were not completely fixed per condition. They could have

decreased at the beginning of a series, but to a smaller extent

than predicted by the Kalman filter. Wei and Körding [12] varied

the uncertainty of the system’s state estimate prior to a

perturbation, and found that the magnitude of the resulting

correction increased with increasing state uncertainty, but this

effect was small. This suggests that in our experiment the learning

rate may have decreased slightly at the beginning of the series, but

less than predicted by the Kalman filter. A constant learning rate

will therefore be a good approximation. Why would the brain

prefer an approximately constant learning rate to a flexible one

that produces a smaller endpoint variance? An obvious advantage

is that the brain does not need to do sophisticated state estimation

and compute the learning rate for every individual movement.

Consistent with this, Wei et al. [30] found that error-driven

planning corrections are nonspecific as they are the same for

perturbations of different natures (i.e., visual disturbances, forces

acting on the arm or changes of the inertia). Another advantage of

a fixed learning rate is that it is robust to incorrect assumptions

about the origin of an observed error. If one would determine the

optimal learning rate in every trial and, for instance, observe a

large error and assume this was due to incorrect planning, one

would make a large correction [13,14]. If, however, the error had

an external origin that was transient, the large correction would be

inappropriate and would result in another large error. This will

happen to a lesser extent when a fixed learning rate is used.

A next question is why our motor system chooses the specific

learning rate that is chooses for a given error-signal reliability. It

may be chosen to minimize the endpoint variance as it was close to

the, for this purpose, optimal value in two of the three conditions.

However, it was not optimal for the condition with the lowest

error-signal reliability. We showed that this difference cannot be

the result of proprioceptive drift, and the sensitivity analysis

suggests that it cannot be explained by incorrect assumptions

about model parameters either. Why did the learning rate differ

from the optimal value in this condition? One possibility is that

subjects used an incorrect estimate of the error-signal reliability,

and used a learning rate that was optimal for this incorrect value.

Using Eq. 29, one can show that this would mean that subjects

overestimated the error-signal variance of the Extent component

by more than a factor 2, and underestimated that of the Direction

component by more than a factor 10. It is unlikely that subjects

misestimated these variances by such large amounts as studies on

visual-proprioceptive integration [31–33] and sensorimotor adap-

tation [34,35] suggest that the sensorimotor system has accurate

knowledge of the precision of vision and proprioception, and even

their anisotropy. Another possibility is that the non-optimality of

the learning rates in the condition with the lowest error-signal

reliability is related to the fact that this condition is qualitatively

different than the other two conditions, as subjects received no

visual feedback about their errors in this condition. Receiving no

visual feedback is different from receiving highly unreliable visual

feedback. The underlying generative models are different, and

even though the two could under certain conditions be mathe-

matically equivalent, it is unclear whether these conditions are

fulfilled in the brain. Future research is required to examine

whether this can explain the results of the condition with the

lowest error-signal reliability.

We found that the learning rate was the same for the Extent and

Direction components for conditions H and M. This confirms that

the scalar learning rate that was used in the model of van Beers

[21] for condition H was appropriate. In contrast, the learning rate

of the Direction component was larger than that of the Extent

component in condition L. This is surprising for three reasons.

First, the resulting endpoint variance would be smaller if it was the

converse (Fig. 8C). The Kalman filter also predicts a larger

learning rate for the Extent than for the Direction component (see

inset of Fig. 3N). This is because the ratio of measurement to

process noise variance is larger for the Extent than for the

Direction component. Second, Burge et al. [11] tested whether the

learning rate changes when the ratio of measurement to process

noise variance is changed. They varied this ratio by making the

measurement noise anisotropic while keeping the process noise

the same, and found a change in the direction that minimizes the
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endpoint variance. Third, visuomotor adaptation studies [36,37]

found that adaptation to a gain change is faster than adaptation to

a rotation, which also corresponds to a larger learning rate for the

Extent than for the Direction component. All these findings are

inconsistent with our result. A possible explanation is that our

brain takes the anisotropy of the error signals into account when

determining the learning rate, but ignores the anisotropy of the

endpoints distribution. Another possibility is that learning rates

following large errors that are attributed to an external origin, as

may happen in experiments with perturbations, are different than

learning rates following smaller errors that are self-generated.

Future research is required to test these ideas.

Our main conclusion is that our brain does not determine the

optimal learning rate for every individual movement, as a Kalman

filter would do. Instead, the learning rate is approximately the

same for all movements with the same level of error-signal

reliability. The average behaviour is thus near optimal, but

individual movements are not optimal. This conclusion applies to

the particular case of determining the learning rate in motor

learning, but the issue is relevant to many other cases in the

sensorimotor domain as well. Examples include feedback control

of on ongoing movement, integration of sensory information and

bimanual coordination. Since neural algorithms that produce

behaviour that is optimal for every individual movement may be

different, probably more complicated, from algorithms that

produce behaviour that is only optimal on average, much insight

into our motor system can be gained from addressing the issue for

other sensorimotor tasks. The present results suggest that our

motor system may not try to optimize individual movements but

cares more about the average behaviour.

Methods

Experimental Methods
Subjects. Eight subjects (three female, five male, 18–24 years

old) participated in all experimental conditions. None of them

reported any sensory or motor deficits, and all had normal or

corrected-to-normal vision, reported being right handed, and were

unaware of the purposes of the study.

Ethics statement. All subjects gave verbal informed consent

(which was then documented) before participation. All experi-

ments were conducted in agreement with the ethics and safety

guidelines of the Science Faculty of Utrecht University, where the

experiment was conducted, and was part of a program that

received blanket approval of the Medical Ethical Test Committee

of the University Medical Centre Utrecht. All data were encoded

and analyzed anonymously.

Apparatus. The same set up was used as in [21]. Subjects

were seated at a table (98 cm wide and 55 cm deep) on a height-

adjustable chair. They looked down in a horizontal mirror that

was mounted above the tabletop and they saw images that were

projected on a projection screen by an LCD projector (12806720

pixels, 60 Hz) (Fig. 1A). The mirror was placed midway between

the tabletop and the projection screen so that it looked as if the

projected images appeared on the tabletop. An Optotrak Certus

system (Northern Digital, Waterloo, Ontario) recorded the

position of an infrared emitting diode that was attached to the

nail of the right index finger (300 Hz, 2D accuracy: better than

0.1 mm). Subjects could not see their arms because these were

hidden by the mirror and a black cloth that was draped over the

shoulders.

Procedure. The task was to move the tip of the right index

finger from a start position to visual targets. The start position was

a pink disc (4 mm radius) at a fixed location approximately 35 cm

in front of the waist. A red cursor (a 4 mm radius disc) was shown

at the fingertip location when it was within 3 cm from the start

position. This enabled subjects to place their finger quickly and

accurately on the start position, and it also prevented drift of the

perceived finger location throughout an experimental session [27].

When the finger had been within 0.5 cm from the start position for

1 s, the finger cursor turned green, and a yellow target (a 4 mm

radius disc) appeared. The instruction was to make a quick,

uncorrected movement to the target. The finger cursor went off

when the finger speed exceeded 2 cm/s. At this moment, the

finger had usually moved less than 1 mm, so that subjects received

no informative visual feedback about their movement trajectory.

The movement endpoint was determined online as the location

where the finger speed first fell below 2 cm/s, and it was displayed

immediately. The way in which it was displayed depended on the

experimental condition:

Condition H (high error reliability): A red disc (4 mm radius)

was shown at the endpoint location. It was shown alongside the

target so that the error signal was highly reliable. A score was

awarded based on the distance from the target (see Fig. 1B). This

condition was identical to Experiment 1 in [21], and the data of

this condition presented here are the same as in that paper.

Condition M (medium error reliability): A cloud of 15 red

circular dots (0.8 mm radius) was shown. The dot locations were

drawn independently from a circular Gaussian distribution with

the actual endpoint as the mean and a standard deviation of

15 mm (see Fig. 1C). New dot positions were generated in every

trial. No score was awarded in this condition.

Condition L (low error reliability): Subjects received no visual

feedback about their movement endpoints (see Fig. 1D), but they

could compare the proprioceptively felt finger position to the seen

target location.

In all conditions, the visual feedback, if any, was shown for 1 s.

After that, subjects moved their finger back to the start position to

begin the next trial.

A session consisted of 24 series of 30 movements each, all in the

same experimental condition. The targets were located at 10 cm

distance from the start position in equally spaced directions. A

blocked design was used, in which the same target was used for all

movements in a series. The target of the first series was randomly

chosen exactly to the left of right of the start location. Each later

target direction differed 105 degrees from the previous direction in

the counter clockwise direction. There were breaks of at least 10

seconds between series. At the start of a session, each subject

practiced the task in the condition of that session for several

minutes before starting the experiment proper (with a different

target than in the first series). A session lasted approximately one

hour. Each subject performed one session of each condition, each

on a different day. The order of conditions was randomized

between subjects.

Analysis. We analyzed the two-dimensional movement end-

points. A small fraction of the movements (0.56%, 0.42% and

0.21% in conditions H, M and L, respectively) was discarded from

the analysis because the recording had failed. Endpoints were

transformed into an Extent component (the component parallel to

the vector from the start location to the mean endpoint of the

series) and a Direction component (the component orthogonal to

the Extent component). To characterize error-corrective learning,

we determined two measures: Mahalanobis distance and serial

correlations.

The Mahalanobis distance was calculated to construct learning

curves. At first sight, a plot of the mean error magnitude as a

function of the movement number in the series could serve as a

suitable learning curve. However, since endpoint distributions
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were anisotropic (Fig. 2), such a curve would mainly reflect

changes in movement extent and practically ignore changes in

movement direction. Moreover, in condition L the endpoint often

shifted away from rather than towards the target (see Fig. 2C for

examples). These are two reasons why the mean error magnitude

is not a suitable measure to construct learning curves. The

Mahalanobis distance does not suffer from these problems. We

calculated Mahalanobis distance D(t) of movement t in a series as:

D(t)~ x(t){�xx
� �T

S{1 x(t){�xx
� �

ð17Þ

where x(t) is the endpoint of movement t, �xx and S are the mean

and covariance matrix of all endpoints in the series, and T denotes

the matrix transpose. The Mahalanobis distance can be interpret-

ed as the squared number of standard deviations that a given

endpoint differs from the mean endpoint in its series. It takes the

anisotropy into account and weights the Extent and Direction

components equally. Since it is a normalized quantity, it can be

averaged across series and subjects, even when their variance

differs.

A learning curve was constructed for each subject by calculating

the Mahalanobis distance of each endpoint, and then averaging

these across series as a function of the trial number in the series.

Time constants of the learning curves, and their 95% confidence

intervals, were estimated for individual subjects using nonlinear

least-squares regression. We fit exponentials of the form a + b(1–

exp(–t/tc)) to the learning curves, where t is the movement number,

a and b are constants and tc is the time constant. Since the time

constant could occasionally not be determined reliably, as

indicated by a large confidence interval, a weighted average over

subjects was calculated by weighing each subject’s time constant

by the inverse of the squared width of the confidence interval.

Whereas learning curves are informative about correction for

large errors in the beginning of a series, the serial correlations

focus on error correction in the ‘‘steady state’’ when errors are

small. Serial correlations were calculated from the last 25

endpoints of each series, to avoid them being influenced by the

correction for the large initial errors. Serial correlations express the

statistical relationship between the endpoints of movements

separated by a certain lag (number of movements) k. Since the

endpoints are two-dimensional, the serial correlations consist of

two autocorrelation functions ACF(k), one for each component

(Extent and Direction), and two cross-correlation functions CCF(k)

between the components. The cross-correlation function CCFi,j(k)

between components i and j at lag k was calculated as:

CCFi,j (k)

~

Pn{k

t~6

x
(t)
i x

(tzk)
j { 1

n{k{5

Pn{k

t~6

x
(t)
i

� � Pn{k

t~6

x
(tzk)
j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn{k

t~6

x
(t)
i

� �2

{ 1
n{k{5

Pn{k

t~6

x
(t)
i

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn{k
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(tzk)
j

� �2

{ 1
n{k{5

Pn{k

t~6

x
(tzk)
j

� �2
s ð18Þ

where xi
(t) denotes component i of the endpoint of movement t, and

n is the number of movements in a series (30). Summations start at

6 because the first 5 movements were not included. The method

developed by Marshall [38] was used to deal with missing values.

The autocorrelation function ACFi(k) of component i at lag k was

found as: ACFi(k) = CCFi,i(k).

Modelling
Model simulations. Two models for trial-by-trial motor

learning are described in the Results section. We ran Monte Carlo

simulations to determine the predictions of each model. Each

simulation consisted of 2,000 sets of 24 simulated series of 30

movements, corresponding to 2,000 subjects performing a full

experiment. Random vectors were drawn from Gaussian distri-

butions to simulate the effects of planning, execution and sensory

noise, as specified in the Results section.

For condition H, the sensory-noise covariance matrix Ssens was

assumed to be zero because subjects received highly reliable error

signals. All subjects participated in a control condition to estimate

Ssens for condition M. This condition was similar to condition M,

but now they saw the cloud of dots from the start of the movement

and they moved their finger until they perceived it aligned with the

target. Eight targets in equally spaced directions were tested. The

variability in the indicated positions hardly varied between targets

and subjects. Based on these results, we assumed that Ssens was

[17.4 0.0; 0.0 17.4] mm2 for each target. For condition L, we

assumed that Ssens equalled [62.5 0.0; 0.0 62.5] mm2, which is the

sum of the variances of visual and proprioceptive (right hand)

localization reported by van Beers et al. [39].

Fitting the models. The potentially most powerful method

to estimate the parameters of a linear dynamic system from time-

series data is maximum likelihood estimation using the expecta-

tion-maximization algorithm [40]. However, this method could

not be used here as simulations showed that it produces biased

estimates for the short time series used here. Instead, we fitted the

models by finding the parameter values that best reproduced the

observed learning curves and autocorrelations. For the Kalman

filter, this amounted to estimating three parameters: w, s and c (but

s was not estimated for condition H, see Results). For the EPAPC

model, there were four free parameters: w, s, Bext and Bdir, but only

three of these were estimated per condition (see Results).

To find the best parameter estimates, we ran simulations for a

range of parameter values. For instance, to fit the EPAPC model

to the data of condition H, Bext and Bdir were varied between 0.1

and 0.9, and w between 0.0 and 0.6. Tensor product splines were

then fit (function spap2 in Matlab) to the resulting ACF(1)s,

ACF(2)s and time constant as a function of Bext, Bdir and w. Best

parameter values were determined per subject by finding the

values for which the sum of squares of the normalized difference

between observed and predicted values of the time constant, and

the ACF(1)s and ACF(2)s of Extent and Direction, was minimized.

The differences were normalized by dividing each difference by

the width of the confidence interval of the observed value. There is

some arbitrariness in treating these five values equally. We verified

that the parameter estimates hardly changed when the five values

were weighted differently (such as giving the time constant a

weight of 50% and the ACFs weights of 12.5%).

The best estimates of the parameter values for the Kalman filter

are given in Table 1, and those of the EPAPC model in Table 5.

One could be surprised by the different values of the estimate of s

for conditions M and L. This probably reflects differential scaling

of the assumed sensory-noise covariance matrices in these

conditions. Indeed, whereas the matrix for condition M was

estimated in a control condition, the matrix for condition L was

estimated from literature values. Free parameter s was included

exactly to account for such effects.

EPAPC Model: Equations for Endpoint Variance and
Autocorrelation

We use Equations 1 and 15 to find an expression for the

endpoint in movement t +1 as a function of the endpoint in

movement t and the various types of noise:

ð18Þ
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x(tz1)~(I{B)x(t)zr
(tz1)
pl {r(t)

exzr(tz1)
ex {Br(t)

senszBxT ð19Þ

The expected endpoint is xT 2 bsens, where bsens is the bias in

the sensory information (see ‘‘Kalman filter: model’’ in Results

section). Define deviation d(t) in movement t as the difference

between the endpoint and the expected endpoint:

d(t)~x(t){(xT{bsens) ð20Þ

Then we have from (19):

d(tz1)~(I{B)d(t)zr
(tz1)
pl {r(t)

exzr(tz1)
ex {Br(t)

senszBbsens ð21Þ

The covariance matrix function [41] of the deviations then is:

C(k)~E d(t){E½d(t)�
� �

d(t{k){E½d(t)�
� �T

h i
~

~E (I{B)d(t{1)zr
(t)
pl {r(t{1)

ex zr(t)
ex{Br(t{1)

sens zBbsens

� �
d(t{k)
� �T

h i
~

~(I{B)C(k{1)zE r
(t)
pl d(t{k)
� �T

h i
{E r(t{1)

ex d(t{k)
� �T

h i
z

zE r(t)
ex d(t{k)
� �T

h i
{BE r(t{1)

sens d(t{k)
� �T

h i
ð22Þ

where E denotes the expected value. After substitution of (21)

and some algebraic manipulations, we find for k = 0:

C(0)~(I{B)C(1)zSplz(IzB)SexzB2Ssens ð23Þ

and for k = 1 we find:

C(1)~(I{B)C(0){Sex ð24Þ

The system of equations (23) and (24) has solution:

C(0)~ B(2I{B)ð Þ{1 Splz2BSexzB2Ssens

� �
C(1)~ B(2I{B)ð Þ{1

(I{B)Spl{B2Sexz(I{B)B2Ssens

� � ð25Þ

C(0) is the covariance matrix of the deviations. Since the

deviations differ a constant vector from the endpoints, it is also the

covariance matrix of the endpoints. When we define the endpoint

variance Var(x) as the trace of the covariance matrix of the

endpoints, we find equation (16). The lag 1 autocorrelation of

component i (1 or 2, denoting Extent and Direction, respectively)

is:

ACFi(1)~
Cii(1)

Cii(0)
ð26Þ

Note that the variance and autocorrelations are independent of

sensory bias bsens.

The fact that all matrices in the above equations are diagonal

(see Results) implies that the Extent and Direction components of

the endpoints evolve independently of one another. The endpoint

variance can therefore be written as the sum of an Extent and a

Direction variance:

Var(x)~
s2

pl,Extz2BExts
2
ex,ExtzB2

Exts
2
sens,Ext

BExt 2{BExtð Þ

z
s2

pl,Dirz2BDirs
2
ex,DirzB2

Dirs
2
sens,Dir

BDir 2{BDirð Þ

ð27Þ

where s2 denotes variance. This equation can also be expressed in

terms of the free parameters of the model:

Var(x)~
wz2BExt(1{w)ð Þss2

mot,ExtzB2
Exts

2
sens,Ext

BExt 2{BExtð Þ

z
wz2BExt(1{w)ð Þss2

mot,DirzB2
Dirs

2
sens,Dir

BDir 2{BDirð Þ

ð28Þ

The optimal learning rates can be found by finding the values of

Bext and Bdir for which the derivatives of the variance with respect

to Bext and Bdir are zero. These optimal learning rates are:

BExt,opt~
{wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2z4w 1{wzRExtð Þ

p
2 1{wzRExtð Þ ,

BDir,opt~
{wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2z4w 1{wzRDirð Þ

p
2 1{wzRDirð Þ

ð29Þ

where: RExt~
s2

sens,Ext

ss2
mot,Ext

, RDir~
s2

sens,Dir

ss2
mot,Dir

.
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