329 research outputs found

    IBD genetic risk profile in healthy first-degree relatives of Crohn's disease patients

    Get PDF
    BACKGROUND: Family history provides important information on risk of developing inflammatory bowel disease [IBD], and genetic profiling of first-degree relatives [FDR] of Crohn's disease [CD]- affected individuals might provide additional information. We aimed to delineate the genetic contribution to the increased IBD susceptibility observed in FDR. METHODS: N = 976 Caucasian, healthy, non-related FDR; n = 4997 independent CD; and n = 5000 healthy controls [HC]; were studied. Genotyping for 158 IBD-associated single nucleotide polymorphisms [SNPs] was performed using the Illumina Immunochip. Risk allele frequency [RAF] differences between FDR and HC cohorts were correlated with those between CD and HC cohorts. CD and IBD genetic risk scores [GRS] were calculated and compared between HC, FDR, and CD cohorts. RESULTS: IBD-associated SNP RAF differences in FDR and HC cohorts were strongly correlated with those in CD and HC cohorts, correlation coefficient 0.63 (95% confidence interval [CI] 0.53 - 0.72), p = 9.90 x 10(-19). There was a significant increase in CD-GRS [mean] comparing HC, FDR, and CD cohorts: 0.0244, 0.0250, and 0.0257 respectively [p < 1.00 x 10(-7) for each comparison]. There was no significant difference in the IBD-GRS between HC and FDR cohorts [p = 0.81]; however, IBD-GRS was significantly higher in CD compared with FDR and HC cohorts [p < 1.00 x 10(-10) for each comparison]. CONCLUSION: FDR of CD-affected individuals are enriched with IBD risk alleles compared with HC. Cumulative CD-specific genetic risk is increased in FDR compared with HC. Prospective studies are required to determine if genotyping would facilitate better risk stratification of FDR

    Gene Expression Changes Associated with Resistance to Intravenous Corticosteroid Therapy in Children with Severe Ulcerative Colitis

    Get PDF
    Microarray analysis of RNA expression allows gross examination of pathways operative in inflammation. We aimed to determine whether genes expressed in whole blood early following initiation of intravenous corticosteroid treatment can be associated with response.From a prospectively accrued cohort of 128 pediatric patients hospitalized for intravenous corticosteroid treatment of severe UC, we selected for analysis 20 corticosteroid responsive (hospital discharge or PUCAI ≤45 by day 5) and 20 corticosteroid resistant patients (need for second line medical therapy or colectomy, or PUCAI >45 by day 5). Total RNA was extracted from blood samples collected on day 3 of intravenous corticosteroid therapy. The eluted transcriptomes were quantified on Affymetrix Human Gene 1.0 ST arrays. The data was analysed by the local-pooled error method for discovery of differential gene expression and false discovery rate correction was applied to adjust for multiple comparisons.A total of 41 genes differentially expressed between responders and non-responders were detected with statistical significance. Two of these genes, CEACAM1 and MMP8, possibly inhibited by methylprednisolone through IL8, were both found to be over-expressed in non-responsive patients. ABCC4 (MRP4) as a member of the multi-drug resistance superfamily was a novel candidate gene for corticosteroid resistance. The expression pattern of a cluster of 10 genes selected from the 41 significant hits were able to classify the patients with 80% sensitivity and 80% specificity.Elevated expression of several genes involved in inflammatory pathways was associated with resistance to intravenous corticosteroid therapy early in the course of treatment. Gene expression profiles may be useful to classify resistance to intravenous corticosteroids in children with severe UC and assist with clinical management decisions

    Complex host genetics influence the microbiome in inflammatory bowel disease

    Get PDF
    Background: Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. One of the strongest associations in each case is inflammatory bowel disease (IBD), but disease risk cannot be explained fully by either factor individually. Recent findings point to interactions between host genetics and microbial exposures as important contributors to disease risk in IBD. These include evidence of the partial heritability of the gut microbiota and the conferral of gut mucosal inflammation by microbiome transplant even when the dysbiosis was initially genetically derived. Although there have been several tests for association of individual genetic loci with bacterial taxa, there has been no direct comparison of complex genome-microbiome associations in large cohorts of patients with an immunity-related disease. Methods: We obtained 16S ribosomal RNA (rRNA) gene sequences from intestinal biopsies as well as host genotype via Immunochip in three independent cohorts totaling 474 individuals. We tested for correlation between relative abundance of bacterial taxa and number of minor alleles at known IBD risk loci, including fine mapping of multiple risk alleles in the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene exon. We identified host polymorphisms whose associations with bacterial taxa were conserved across two or more cohorts, and we tested related genes for enrichment of host functional pathways. Results: We identified and confirmed in two cohorts a significant association between NOD2 risk allele count and increased relative abundance of Enterobacteriaceae, with directionality of the effect conserved in the third cohort. Forty-eight additional IBD-related SNPs have directionality of their associations with bacterial taxa significantly conserved across two or three cohorts, implicating genes enriched for regulation of innate immune response, the JAK-STAT cascade, and other immunity-related pathways. Conclusions: These results suggest complex interactions between genetically altered host functional pathways and the structure of the microbiome. Our findings demonstrate the ability to uncover novel associations from paired genome-microbiome data, and they suggest a complex link between host genetics and microbial dysbiosis in subjects with IBD across independent cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0107-1) contains supplementary material, which is available to authorized users

    The NOD2-Smoking Interaction in Crohn's Disease is likely Specific to the 1007fs Mutation and may be Explained by Age at Diagnosis:A Meta-Analysis and Case-Only Study

    Get PDF
    Background: NOD2 and smoking are risk factors for Crohn's disease. We meta-analyzed NOD2-smoking interactions in Crohn's disease (Phase 1), then explored the effect of age at diagnosis on NOD2-smoking interactions (Phase 2). Methods: Phase 1: MEDLINE and EMBASE were searched for studies (n = 18) providing data on NOD2 and smoking in Crohn's disease. NOD2-smoking interactions were estimated using odds ratios (ORs) and 95% confidence intervals (CIs) calculated using random effects models. Phase 2: A case-only study compared the proportion of smokers and carriers of the 1007 fs variant across ages at diagnosis (≤16, 17–40, >40 years). Findings: Phase 1: Having ever smoked was less common among carriers of the 1007 fs variant of NOD2 (OR 0.74, 95%CI:0.66–0.83). There was no interaction between smoking and the G908R (OR 0.96, 95%CI:0.82–1.13) or the R702W variant (OR 0.89, 95%CI:0.76–1.05). Phase 2: The proportion of patients (n = 627) carrying the 1007 fs variant decreased with age at diagnosis (≤16 years: 15%; 17–40: 12%; >40: 3%; p = 0.003). Smoking was more common in older patients (≤16 years: 4%; 17–40: 48%; >40: 71%; p < 0.001). Interpretation: The negative NOD2-smoking interaction in Crohn's disease is specific to the 1007 fs variant. However, opposing rates of this variant and smoking across age at diagnosis may explain this negative interaction

    Combined Serological, Genetic, and Inflammatory Markers Differentiate Non-IBD, Crohnʼs Disease, and Ulcerative Colitis Patients:

    Get PDF
    Previous studies have demonstrated that serological markers can assist in diagnosing inflammatory bowel disease (IBD). In this study, we aim to build a diagnostic tool incorporating serological markers, genetic variants, and markers of inflammation into a computational algorithm to examine patterns of combinations of markers to (1) identify patients with IBD and (2) differentiate patients with Crohn’s disease (CD) from ulcerative colitis (UC)

    Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis

    Get PDF
    BACKGROUND & AIMS: RAC1 is a GTPase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases (IBD) are associated with dysregulation of immune defenses. We studied the role of RAC1 in IBD using human genetic and functional studies and animal models of colitis. METHODS: We used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms (SNPs) in a discovery cohort; findings were confirmed in 2 additional cohorts. RAC1 mRNA expression was examined from peripheral blood cells of patients. Colitis was induced in mice with conditional disruption of Rac1 in phagocytes by administration of dextran sulphate sodium (DSS). RESULTS: We observed a genetic association between RAC1 with ulcerative colitis (UC) in a discovery cohort, 2 independent replication cohorts, and in combined analysis for the SNPs rs10951982 (Pcombined UC = 3.3 × 10–8, odds ratio [OR]=1.43 [1.26–1.63]) and rs4720672 (Pcombined UC=4.7 × 10–6, OR=1.36 [1.19–1.58]). Patients with IBD who had the rs10951982 risk allele had increased expression of RAC1, compared to those without this allele. Conditional disruption of Rac1 in macrophage and neutrophils of mice protected them against DSS-induced colitis. CONCLUSION: Studies of human tissue samples and knockout mice demonstrated a role for the GTPase RAC1 in the development of UC; increased expression of RAC1 was associated with susceptibility to colitis
    corecore