1,176 research outputs found

    Strategies to mitigate the emission of methane in pastures: Enteric methane: A review

    Get PDF
    The global population reached 7.9 billion in 2021, which represents a 160% increase in the number of people to be fed since 1960. Agricultural systems must sustainably meet food demand for this growing population while minimizing or mitigating potential environmental impacts, which are of growing concern to both consumers and the scientific community. High protein animal products (meat and milk) play a crucial part in human nutrition and pastures represent ~20% of the planet’s surface. Pastoral areas have a great influence on both ecological balance and human subsistence. Ruminant livestock production systems are hotly debated because of the emission of methane, which is produced during enteric fermentation of ingested food within the rumen. Methanogenesis is a naturally occurring process in the digestive system of ruminant animals and ingesting a high-quality diet has been shown to reduce methane production. An additional function of pastoral grasslands is the capacity of the soils to operate as carbon sinks. Well managed pastures absorb carbon from the atmosphere where it can add to soil organic matter directly, through residue decomposition or excrement returns. However, in Brazil and globally, the efficiency of animal productivity tends to be lower in extensively grazed farming systems. Changes to pasture and grazing management in combination with the adoption of technology is necessary to improve the quality of pastures, increase animal productivity, and consequently reduce methane emissions from ruminant livestock. This review will discuss how to improve the conversion efficiency using pasture management to reduce or mitigate enteric methane production

    Multivariate analysis reveals genetic diversity in Paspalum notatum Flügge

    Get PDF
    The objective of this study was to evaluate 94 Paspalum notatum genotypes over two growing seasons to estimate genetic dissimilarity through agronomic traits and the distance between genotypes. This information is used to create an ideotype from the best averages obtained for the set of characteristics evaluated. Seven apomitic, three sexual, and 81 hybrid genotypes were compared with native genotypes “André da Rocha”, “Bagual”, and cultivar “Pensacola” as controls. There is genetic variability in P. notatum for the studied characteristics, and distinct genotypes with superior characteristics can be used in new combinations between apomictic and sexual plants to obtain hybrids. The characters with the greatest relative contribution to the dissimilarity between the genotypes were tiller density, stem dry mass, and leaf dry mass yield. Thus, these characteristics are suitable criteria to infer genetic distance studies in P. notatum. The selection index based on the ideotype is an auxiliary tool in the breeding process. The ideotype must be based on characteristics of interest according to the objective of the breeding program, as well as on the breeder’s prior knowledge in relation to culture

    The C-terminal region of Trypanosoma cruzi MASPs is antigenic and secreted via exovesicles.

    Get PDF
    Trypanosoma cruzi is the etiological agent of Chagas disease, a neglected and emerging tropical disease, endemic to South America and present in non-endemic regions due to human migration. The MASP multigene family is specific to T. cruzi, accounting for 6% of the parasite's genome and plays a key role in immune evasion. A common feature of MASPs is the presence of two conserved regions: an N-terminal region codifying for signal peptide and a C-terminal (C-term) region, which potentially acts as GPI-addition signal peptide. Our aim was the analysis of the presence of an immune response against the MASP C-term region. We found that this region is highly conserved, released via exovesicles (EVs) and has an associated immune response as revealed by epitope affinity mapping, IFA and inhibition of the complement lysis assays. We also demonstrate the presence of a fast IgM response in Balb/c mice infected with T. cruzi. Our results reveal the presence of non-canonical secreted peptides in EVs, which can subsequently be exposed to the immune system with a potential role in evading immune system targets in the parasite

    Genetic parameters, prediction of gains and intraspecific hybrid selection of Paspalum notatum Flügge for forage using REML/BLUP

    Get PDF
    Genetic improvement of native forage species is a sustainable alternative for maximizing livestock production. Paspalum notatum Flügge is the most important forage grass in the native grasslands of southern Brazil, with substantial potential available for further genetic improvement. The objective of this study was to quantify a range of genetic parameters and predict yield gains in a population of P. notatum intraspecific hybrids. Results indicated intraspecific hybrids of P. notatum had high magnitudes of heritability in the broad and average sense of genotype, plus high selective accuracy and genetic variation for all forage characteristics evaluated. This indicated REML/BLUP can contribute useful information for plant selection in future plant breeding programs. The genetic material studied showed high genetic variability for forage production. Analysis indicated hybrids 336, 332, 437, 132 and male parent '30N' should be included in new crosses to increase the dry matter production of P. notatum. Parents need to be selected from different groups in order to maximize genetic variability and heterosis. In addition, these parents must be included in diallel crosses. The results obtained in this study provide important information for the future breeding of improved P. notatum cultivars for commercialization

    Risk factors for hepatitis B virus infection in Rio de Janeiro, Brazil

    Get PDF
    BACKGROUND: Despite international efforts to prevent hepatitis B virus (HBV) infection through global vaccination programs, new cases are still being reported throughout the world. METHODS: To supply data that might assist in improving preventive measures and national surveillance for HBV infection, a cross-sectional study was conducted among individuals referred to the Brazilian National Reference Center for Viral Hepatitis (Rio de Janeiro) during a two-year period. Reported risk factors among infected subjects ("HBV-positive") were compared to those of subjects never exposed ("HBV-negative") to HBV. Two subgroups were further identified within the HBV-positive group, "acute" infection and "non-acute" infection. RESULTS: A total of 1,539 subjects were tested for HBV, of which 616 were HBV-positive (79 acute infection and 537 non-acute infection). HBV-positive subjects were more likely to be of male gender (63% versus 47%); and to report multiple sexual partners (12% versus 6%) and illicit drug use (IDU and/or intranasal cocaine use) (6% versus 3%). Among the HBV-positive subgroups, age differed significantly, with 48% being under 30 years of age in subjects acutely infected compared to 17% in those with non-acute infection. CONCLUSIONS: The association of multiple sexual partners with past HBV infection and the age distribution of currently infected subjects suggest that sexual transmission played a major role in the transmission of HBV in this study population. Thus, vaccination during adolescence should be considered

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
    corecore