69 research outputs found

    Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2x1)

    Get PDF
    We report results on the self-assembly of silicon nanoribbons on the (2x1) reconstructed Au(110) surface under ultra-high vacuum conditions. Upon adsorption of 0.2 monolayer (ML) of silicon the (2x1) reconstruction of Au(110) is replaced by an ordered surface alloy. Above this coverage a new superstructure is revealed by low electron energy diffraction (LEED) which becomes sharper at 0.3 Si ML. This superstructure corresponds to Si nanoribbons all oriented along the [-110] direction as revealed by LEED and scanning tunneling microscopy (STM). STM and high-resolution photoemission spectroscopy indicate that the nanoribbons are flat and predominantly 1.6 nm wide. In addition the silicon atoms show signatures of two chemical environments corresponding to the edge and center of the ribbons.Comment: Under publication in Applied Physics Letter

    Multiple satellites in materials with complex plasmon spectra: From graphite to graphene

    Get PDF
    International audienceThe photoemission spectrum of graphite is still debated. To help resolve this issue, we present photoemission measurements at high photon energy and analyze the results using a Green's function approach that takes into account the full complexity of the loss spectrum. Our measured data show multiple satellite replicas. We demonstrate that these satellites are of intrinsic origin, enhanced by extrinsic losses. The dominating satellite is due to the π+σ plasmon of graphite, whereas the π plasmon creates a tail on the high-binding energy side of the quasiparticle peak. The interplay between the two plasmons leads to energy shifts, broadening, and additional peaks in the satellite spectrum. We also predict the spectral changes in the transition from graphite towards graphene

    Silicon Sheets By Redox Assisted Chemical Exfoliation

    Full text link
    In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.Comment: Accepted in J. Phys.: Condens. Matte

    High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001)

    Get PDF
    International audienceThe van de Waals heterostructure formed by an epitaxial trilayer graphene is of particular interest due to its unique tunable electronic band structure and stacking sequence. However, to date, there has been a lack in the fundamental understanding of the electronic properties of epitaxial trilayer graphene. Here, we investigate the electronic properties of large-area epitaxial trilayer graphene on a 4° off-axis SiC(0001) substrate. Micro-Raman mappings and atomic force microscopy (AFM) confirmed predominantly trilayer on the sample obtained under optimized conditions. We used angle-resolved photoemission spectroscopy (ARPES) and Density Functional Theory (DFT) calculations to study in detail the structure of valence electronic states, in particular the dispersion of π bands in reciprocal space and the exact determination of the number of graphene layers. Using far-infrared magneto-transmission (FIR-MT), we demonstrate, that the electron cyclotron resonance (CR) occurs between Landau levels with a (B)1/2 dependence. The CR line-width is consistent with a high Dirac fermions mobility of ~3000 cm2·V−1·s−1 at 4 K

    Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    Get PDF
    International audienceStacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene

    Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission

    Get PDF
    Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha’s rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation

    Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: electronic properties and band structure

    Get PDF
    We report on the controlled growth of h-BN/graphite by means of molecular beam epitaxy. X-Ray photoelectron spectroscopy suggests the presence of an interface without any reaction or intermixing, while the angle resolved photoemission spectroscopy (ARPES) measurements show that the h-BN layers are epitaxially aligned with graphite. A well-defined band structure is revealed by ARPES measurements, reflecting the high quality of the h-BN films. The measured valence band maximum located at 2.8 eV below the Fermi level reveals the presence of undoped h-BN films (band gap 6 eV). These results demonstrate that, although only weak van der Waals interactionsare present between h-BN and graphite, a long range ordering of h-BN can be obtained even on polycrystalline graphite via van der Waals epitaxy, offering the prospect of large area, single layer h-BN

    High resolution and time resolved photoemission spectroscopy for developing more efficient materials to reduce energy consumption and increase renewable energy production

    No full text
    Due to the increase of energy consumption and the resulting ecological challenge, a collective awareness leads to the development of renewable energies and more efficient materials to increase the green energy production. Development of efficient photovoltaic materials is very closely related to their chemical and electronic properties. A better knowledge of these imbricated properties is needed, in addition to a better comprehension of their interplay with charge transport mechanisms. Exciton creation and recombination processes, charge transfer and charge collection processes take place at the surface and interface of the photoactive materials. Photoemission spectroscopy as chemical specific and surface sensitive spectroscopic technique is a method of choice on the study of physical phenomena at the origin of photoconversion efficiency. Time resolved photoemission spectroscopy has been recently renewed interest covering time scale from fs to more than seconds. It permits to probe the dynamics of relaxation of photoexcited charges and determine their lifetime. It finds application in various materials used in solar photovoltaics. In this paper, we define the physical and chemical properties determined by the combination of high resolution and time resolved photoemission spectroscopy. We show examples dealing with the development of renewable energy and energy consumption reduction in agreement with the current ecological trend for a better future

    X3_3 synthon geometries in two-dimensional halogen-bonded 1,3,5-tris(3,5-dibromophenyl)benzene self-assembled nanoarchitectures on Au(111)-(22 x 3\sqrt 3)

    No full text
    International audienceSelf-assembly of star-shaped 1,3,5-tris(3,5-dibromophenyl)benzene molecules on Au(111)-(22 x 3\sqrt 3) in a vacuum is investigated using scanning tunneling microscopy and core-level spectroscopy. Scanning tunneling microscopy shows that the molecules self-assemble into a hexagonal porous halogen-bonded nanoarchitecture. This structure is stabilized by X3A_{3-A} synthons composed of three type-II halogen-interactions (halogen-bonds). The molecules are oriented along the same direction in this arrangement. Domain boundaries are observed in the hcp region of the herringbone gold surface reconstruction. Molecules of the neighboring domains are rotated by 180°. The domain boundaries are stabilized by the formation of X3B_{3-B} synthons composed of two type-II and one type-I halogen-interactions between molecules of the neighboring domains. Core-level spectroscopy confirms the existence of two types of halogen-interactions in the organic layer. These observations show that the gold surface reconstructions can be exploited to modify the long-range supramolecular halogen-bonded self-assemblie
    corecore