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The photoemission spectrum of graphite is still debated. To help resolve this issue, we present photoemission
measurements at high photon energy and analyze the results using a Green’s function approach that takes
into account the full complexity of the loss spectrum. Our measured data show multiple satellite replicas. We
demonstrate that these satellites are of intrinsic origin, enhanced by extrinsic losses. The dominating satellite is
due to the π + σ plasmon of graphite, whereas the π plasmon creates a tail on the high-binding energy side of
the quasiparticle peak. The interplay between the two plasmons leads to energy shifts, broadening, and additional
peaks in the satellite spectrum. We also predict the spectral changes in the transition from graphite towards
graphene.

DOI: 10.1103/PhysRevB.89.085425 PACS number(s): 73.22.Pr, 71.45.Gm, 71.10.−w, 71.15.Qe

I. INTRODUCTION

Photoemission is a prominent experimental tool to access
the electronic structure of materials. Angular-resolved photo-
electron spectroscopy (ARPES) is frequently used to extract
the band structure and quasiparticle (QP) lifetimes of a large
variety of systems [1]. However, in a photoemission spectrum,
besides the QP peaks and incoherent background, satellite
peaks often appear. In the intrinsic spectral function, within the
three-step model [2], these satellites can be understood in terms
of coupling of a QP to additional excitations of the system.

Their nature is often debated. In simple metals plasmon
satellite replicas are observed [3], but it is difficult to discern
experimentally to which extent these are intrinsic features
[4], or due to losses of the outgoing photoelectron (called
extrinsic). In nickel, the satellite at 6 eV below the QP peak
cannot be explained with the plasmon spectrum, but is due
to a bound hole-hole state [5,6]. Recently a satellite in doped
graphene was interpreted as a plasmaron, a strongly coupled
electron-plasmon excitation [7]. In 3d and 4f systems, satel-
lites have been ascribed to strong electron-electron interaction
within a Mott-Hubbard picture [8]. In other materials, e.g.,
graphite, the very existence of intrinsic satellite features
has been questioned. In this system observed valence-band
satellite structures have been attributed to extrinsic losses
and subtracted from the measured spectrum [9,10]. These
debates, even for supposedly simple materials, are in part due
to the lack of a widely applicable theoretical approach for
the description of satellites. Ab initio calculations typically
ignore satellites and concentrate on QP properties, often using
the GW approximation for the self-energy in the framework
of many-body perturbation theory [11]. In this approach the
dynamically screened Coulomb interaction W that multiplies
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the one-body Green’s function G contains plasmon excitations
that may lead to satellites. However, GW is believed to fail in
predicting the satellite spectra [4], although it performs well
for QP energies. Satellites are rarely computed, so that much
of the information obtained from experiment is wasted. Our
aim is to push this limit.

In the present work we focus on plasmon satellites, which
occur in most materials, from metals to insulators. Plasmons
lead to multiple satellites, forming a decaying series of peaks
below the QP. These structures can be explained with a spectral
function derived from an exponential (also referred to as
cumulant) form of the one-particle Green’s function, itself a
solution of an electron-boson coupling model [4,12,13]. In the
present case the plasmon plays the role of the boson, though the
cumulant form is more general. The plasmon contribution has
been derived in several ways, e.g., starting from GW [4,13,14],
or as a linear response contribution of the Hartree potential
[15]. The combination of the cumulant solution with the GW

calculation (GW + C) and the same method with additional
extrinsic and interference contributions (GW + C∗) yielded
excellent agreement with experiment for bulk silicon [15,16].
The GW approximation alone, instead, gave rise to a spurious
plasmaron solution in silicon, similarly to the homogeneous
electron gas [17–19]. Hence, GW + C∗ appears to be the
method of choice for plasmon satellites.

In this article we address the layered material graphite
and its building block graphene. We generalize the approach
used in Refs. [15,16] that was based on the use of a single
plasmon pole approximation for W , to materials with an
arbitrarily complex excitation spectrum. Our computational
results are compared to new bulk sensitive photoemission
data for graphite. The excellent agreement between theory and
experiment allows us to address several important questions:
(i) does graphite have intrinsic satellites? (ii) Does the GW ap-
proximation create a spurious plasmaron also in this material?
(iii) Are there any new effects in the XPS spectrum caused by
the more complex plasmon spectrum, and in particular by the
existence of two main plasmon peaks? Finally, it allows us to
make predictions for the satellite structure in graphene.
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We start describing the experimental setup for the
XPS measurements and the computational details of the
calculations in Sec. II. Results are discussed in Sec. III.
We analyze the shortcomings of the GW approximation in
graphite and discuss the absence of a plasmaron in this
particular case in Sec. III B. We give the interpretation of
the XPS spectrum of graphite on the basis of our GW + C∗
calculations in Sec. III C. Then we calculate the GW + C∗
spectral function of undoped graphene showing how and
why this differs from its graphite counterpart in Sec. III D.
Conclusions are drawn in Sec. IV.

II. TECHNICAL DETAILS

A. Experimental setup

ARPES measurements were performed at the UHV photoe-
mission station of the TEMPO beamline [20] at the SOLEIL
synchrotron radiation source. Linearly polarized photons from
the Apple II type Insertion Device (HU44) were selected in
energy using a high resolution plane grating monochromator
with a resolving power E/�E = 5000. The end-station
chamber (base pressure 10−10 mbar) is equipped with a
modified SCIENTA-2002 electron analyzer with a delay-line
2D detector which optimizes the detection linearity and
signal/background ratio [21]. The overall energy resolution
was better than 200 meV. The photon beam impinged on the
sample at an angle of 43◦, and photoelectrons were detected
on an angular range of 12◦. Highly oriented pyrolytic graphite
(HOPG) was cleaved in the introduction stage of the UHV
system exposing a new surface immediately before the transfer
to UHV. At 800 eV kinetic energy the Brillouin zone (BZ) is
observed with an emission angle of about 8◦. The measured
photoemission map was integrated over the spectral intensity
originated by one BZ. The Fermi level was obtained by
measuring a clean Au(111) surface.

B. Computational details

We performed ab initio calculations using a plane-wave
basis. We used the ABINIT code for all ground-state and
GW calculations [22], using experimental values for lattice
constants. The Brillouin zone of graphite was sampled using
a 9 × 9 × 2 Monkhorst-Pack grid [23], yielding 162 points in
the full BZ. We have used Troullier-Martins norm-conserving
pseudopotentials [24] available in the ABINIT code library.
The plane-wave cutoff for the LDA ground-state calculation
was fixed at 30 Ha. The full frequency dependence of
the self-energy for the eight valence bands was calculated
using a contour-deformation technique, and with partial
self-consistency, namely on the quasiparticle energies in
the Green’s function (GW0 calculations). W was calculated
including 160 bands and using 997 plane waves for the
wave functions. The dielectric matrix was calculated using
287 G vectors, 4 frequencies on the imaginary axis, and 60
frequencies on the real axis, with a maximum value fixed
at 2 Ha. The self-energy was calculated using 250 bands,
1385 plane waves for the wave functions, 287 G vectors for
the dielectric matrix, and 585 plane waves for the exchange
term. The self-energy of graphite was calculated for 50
frequencies/Ha for a range of 65 eV below the Fermi energy.
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FIG. 1. (Color online) XPS spectrum of HOPG at 800 eV photon
energy. The experimental data collected at normal emission (blue
dots) are compared to the spectral function A(ω) calculated from GW

(magenta dashed line) and from a multipole version of Eq. (1) (green
dot-dashed line). On top of the latter the black solid line also includes
extrinsic and interference effects. The result for A(ω) in the single
plasmon pole approximation (Np = 1) for Eq. (1) (red dotted line) is
shown for comparison. All curves are scaled to match the intensity
of the main QP peak at −20 eV. All theoretical spectra contain
photoabsorption cross sections, the calculated secondary electron
background, and 0.4 eV Gaussian broadening to account for finite
BZ sampling and experimental resolution.

The GW0 spectral function of graphene was calculated
using equivalent parameters on a slightly different k-point grid
(12 × 12 × 1). We set up a supercell in real space with 38 bohrs
of vacuum on the z direction.

III. RESULTS

A. Experiment

The experimental result is shown by the blue dots in Fig. 1.
The QP band structure is found between the Fermi level and
25 eV binding energy. A tail extends down to about −30 eV,
followed by a broad satellite in the range [−65;−30] eV and
a washed out structure below −65 eV. The average distance
between the main satellite and the QP region is close to the
energy of the π + σ plasmon (∼27 eV) in the loss spectrum
of graphite. There is no clear structure that one could assign to
the π plasmon (7 eV in the loss spectrum). Overall there is too
much broadening to draw reliable conclusions only from the
data. In previous experimental studies [10,25], features beyond
the QP peaks have been attributed to extrinsic background
effects and subtracted from the raw data in order to obtain
an “intrinsic” spectrum. Our work suggests a revision of this
hypothesis, as we show below.

B. Graphite–GW

We first look at the results of a GW calculation. The full
frequency dependence of the self-energy is calculated with the
ABINIT code [22], using a contour-deformation technique.
The calculation involves a partial degree of self-consistency,
namely on the real part of the QP energies, while W is kept
fixed. The total GW spectral function (magenta dashed curve
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FIG. 2. (Color online) GW spectral function A(ω) (solid black
line) with imaginary (dotted blue line) and shifted real (dashed
green line) parts of the GW self-energy. (a) Lowest valence state at
k = (0.0,0.0,0.25). (b) Highest valence state at k = (0.33,0.33,0.25).
Inset: Zoom on A(ω).

in Fig. 1) well describes the QP part of the spectrum.1 More-
over, it exhibits a small bump due to the π plasmon that may
explain the tail located around −25 eV in the experiment and a
second structure in correspondence with the first experimental
satellite that can be attributed to the π + σ plasmon. Overall
the GW result is sufficiently good for a qualitative discussion,
in striking contrast to, e.g., the case of silicon.

In order to understand this point, and to exclude a simple
coincidence, we analyze the GW self-energy in a single
plasmon-pole model.2 The correlation part of the self-energy
for a hole is then approximatively �c(ω) = λ/[ω − ε + ωp −
iγ ], with γ , ωp, and λ, respectively, the inverse lifetime, the
plasmon frequency, and the strength; ε is the self-consistently
calculated QP energy. This model describes the GW self-
energy around each plasmon satellite, as one can see by
qualitative comparison with the full ab initio calculation: The
latter is shown in Fig. 2.

Figures 2(a) and 2(b) show the imaginary Im� (blue dotted
line) and shifted real (green dashed line) ω − ε0 − Re�(ω)
parts of the ab initio GW self-energy for two valence states
(ε0 is the single-particle energy). The imaginary parts exhibit
two structures, associated with the π and π + σ plasmons, and
the real parts have the dispersion resulting from the Kramers-
Kronig relation. The satellites in the spectral function (black
solid line) are in correspondence with the local maxima ωmax

of the real part of the self-energy.
To first order in γ , the model yields ωmax ≈ ε − ωp − γ :

The GW satellites are close to the expected position ε − ωp.
For larger values of γ , the shift towards larger binding
energy introduced by the GW approximation becomes
significant. This explains the quantitative discrepancy with

1The QP peak at −10 eV is too sharp, which may be due to the
approximate inclusion of cross-section effects and to domains in the
sample.

2The energetic distance of the two plasmons in graphite is large
enough to qualitatively justify such a simplification for the present
discussion.

the experimental positions, as observed in Fig. 1. Still, the
origin of the plasmon satellite remains unchanged. Instead,
the model predicts that the spectrum becomes qualitatively
worse when the oscillation in the real-part term is so strong
that the curve crosses zero around ωmax: The satellite
position is then no longer determined by ωmax, but by the left
zero-crossing point, analogously to the QP. This crossing leads
to a sharp peak, the so-called plasmaron, and is a spurious
effect of the GW approximation [19]. The plasmaron spoils
the satellite spectra of silicon [15] and the homogeneous
electron gas, and is the origin for the bad reputation of GW

satellites. Our model shows that such a crossing occurs for
λ > 2γωp: It is favored by a large plasmon intensity and
coupling, a small plasmon energy, and small broadening. This
condition is not fulfilled in graphite: The π plasmon has small
intensity, and the intense π + σ plasmon has large broadening.
This explains why GWA can be used in graphite to analyze
plasmon satellites, contrary, e.g., to the case of silicon.

However, the remaining discrepancy still does not allow
definite conclusions. It is hence important to compare to the
more advanced GW + C∗.

C. Graphite–GW + C∗

We have first applied the single plasmon pole model as used
in Refs. [15,16], reproducing the dominant π + σ plasmon.
The resulting intrinsic GW + C spectral function (red dotted
curve in Fig. 1) shows two satellites at −50 and −75 eV,
in very good correspondence with the experimental ones.
They are however too sharp, and the tail on the QP peak is
missing, contrary to the GW result, evaluated with the full
energy dependence of W . We therefore include the full W

also in GW + C, by adopting a multipole representation with
a number of poles Np [16,26]. The positions ωj and strengths
aj are fitted to the results of a GW calculation [15,16].

The final results presented here were calculated using
Np = 150. However, already Np = 2 (one pole for the π and
π + σ plasmon, respectively) represents the main features,
and it eases the interpretation. For a given state, the spectral
function A(ω) = 1/π | ImG(ω)| then becomes

A(ω) = �

π
e−(a1+a2)

[
1

(ω − ε)2 + �2
+ a1

(ω − ε + ω1)2 + �2

+ a2

(ω − ε + ω2)2 + �2
+ 1

2

a2
1

(ω − ε + 2ω1)2 + �2

+ 1

2

a2
2

(ω − ε + 2ω2)2 + �2

+ a1a2

(ω − ε + ω1 + ω2)2 + �2
+ · · ·

]
, (1)

where ε + i� is the QP energy including lifetime broadening.
The aj and ωj are the intensities and frequencies, respectively,
associated with the plasmons. The spectral function shows
a peak at the QP energy ε, followed by a series of satellite
peaks. Their distance from the QP peak corresponds to
sums of plasmon pole energies; for a peak of order n, one
finds peaks at a distance of n (equal or different) plasmon
energies from ε. The weight of each peak is the product of
the corresponding aj and a prefactor due to the expansion.
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FIG. 3. (Color online) C 1s XPS spectrum of HOPG at 800 eV
photon energy as measured in the present work (blue line with points),
Ref. [25] (black squares), and in Ref. [27] (orange circles). Signatures
of the π and π + σ plasmons are clearly visible, as well as the feature
termed P3 in Refs. [25,27].

Equation (1) yields a first decaying series of plasmon
satellites at a distance from the QP peak of multiples of ω1, and
a second series from ω2. Moreover, a new series of multiple
satellites results from the sum of multiples of ω1 and ω2,
with the smallest being ω1 + ω2; the intensity of this peak is
proportional to a1a2. It is significantly more intense than the
smaller second-order peak of the two because a1a2 > a2

1/2 for
a1 < 2a2. Higher orders form additional structures centered at
nω1 + mω2 with intensity na1ma2. Since these mixed peaks
have no one-to-one correspondence with the loss spectrum,
their interpretation needs the support of theory.

The resulting spectral function A(ω) (green dot-dashed
curve in Fig. 1), calculated for Np = 150, shows the closest
agreement in peak positions with the experimental result, much
better than both the GW and the single pole ones. The tail
below the QP region is well reproduced, the first satellite is
in the correct position, and there is significant broadening
as found in experiment. The second satellite at −75 eV is
washed out. Contrary to a previous hypothesis, at least the
first-order part of the satellite spectrum of graphite has hence a
significant intrinsic contribution. To further add extrinsic and
interference contributions, following [2,16], we renormalize
the coefficients aj and add a lifetime broadening to the plasmon
energies. All parameters are calculated, not fitted, for 800 eV
photon energy. We also include in all spectra the calculated
secondary electron background and cross sections as described
in Ref. [16]. The GW + C∗ result (black continuous curve in
Fig. 1) is in excellent agreement with experiment, confirming
the validity of the approach and the resulting analysis.

Satellites are resolved especially well in core-level spectra.
Figure 3 shows our measured carbon 1s spectrum together
with previous experimental results [25,27]. Both the signature
of the π plasmon and the presence of at least one additional
structure on the π + σ plasmon satellite are clearly visible.
The additional structure has been termed P3, and measured in
various carbon based materials [25] (see also, e.g., [27]), but
could never be explained to our knowledge. However, for all
measured materials it appears to be situated approximatively
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FIG. 4. (Color online) Comparison of graphite (dot-dashed green
line) and graphene (solid black line) spectral functions using
GW + C. The QP part of graphene (dotted black line) is reported
for comparison. The QP and satellite tail at −30 eV do not change
going from graphite to graphene, while most of the satellite weight
below −40 eV disappears. This change stems from the differences
in the loss functions. Inset: The calculated loss function −Im [ε−1]
(arbitrary units vs eV) of graphite (dashed black line) is compared
to graphene (solid blue line). The curves are scaled to match the
intensity of the π plasmon peak.

at the sum of the materials-dependent energies of the first two
main plasmon peaks [25]. We can therefore identify it with the
the ω1 + ω2 peak predicted by our Eq. (1).

The superposition of states in the valence broadens the
spectrum, so that the π plasmon satellite close to the QP only
shows up as a tail. Moreover, the ω1 + ω2 peak on the π + σ

satellite cannot be resolved. However, the position of the center
of mass of the π + σ satellite in the full spectrum in Fig. 1
shows a shift of ∼2 eV to higher binding energy as compared to
the single pole calculation, which can be ascribed to the ω1 +
ω2 contribution (see the Appendix for quantitative details).
We can conclude that this mixed term leads in graphite to a
shift of the main valence plasmon satellite and to an additional
broadening. It contributes to the excellent agreement between
our final result (black continuous curve) and experiment. Thus
the approach allows us to fully describe and understand the
XPS of graphite and to conclude the long standing debate
about the nature of observed incoherent structures.

D. Graphene

These convincing results allow us to extend the calculations
to graphene. It is important to produce benchmark results for
ideal freestanding graphene, because experimental photoemis-
sion results are obtained on substrates, which complicates
the interpretation. The transition from graphite to graphene,
from three to two dimensions, is also interesting from a purely
fundamental point of view.

Figure 4 shows the result of our calculations. The green
dot-dashed curve is the graphite intrinsic spectral function
(same as Fig. 1, without secondary-electron background). The
black continuous curve is the GW + C result for graphene. In
the QP region the two materials are extremely similar: Indeed,
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the charge density on the graphene layers changes only a little
when the sheets are brought together to form graphite, with
weak hybridization and a similar band structure. However,
satellites are due to plasmon excitations which involve the
long-range Coulomb interaction. This long-range interaction
“detects” the presence of additional layers even at far distances.
The plasmon spectra of graphite and graphene are therefore
completely different (see inset in Fig. 4). In particular the
π + σ plasmon in graphene disappears, with only a small con-
tribution remaining at much lower energies (∼15 eV), which
explains the fading of the corresponding satellite in photoemis-
sion. The π plasmon is more stable and indeed, the correspond-
ing tail on the QP peak remains intact. As our work confirms,
this tail is an intrinsic feature of graphite and graphene.

For more detailed comparison, we also look at single
bands including the corresponding self-energy contributions.
Plasmaron solutions are defined as crossing of the ω − ε0 −
Re�(ω) curve with the horizontal axis, at higher binding
energies than the QP peak. Figure 5 shows that there are
no plasmaron solutions either in graphite or graphene. The
behavior of the self-energy is similar in the two cases, as it is
shown in Fig. 5. However, the shifted real-part term in graphite
has a relatively steep slope stemming from the π + σ plasmon,
which leads to significant screening of the π plasmon structure.
In graphene instead, the π + σ plasmon is strongly suppressed,
hence the structure in the real-part term due to the π plasmon is
closer to zero. Still, our GW calculation shows no plasmaron
solution for undoped graphene. Instead, doping creates carriers
that lead to additional plasmon excitations at very low energies
(small ωp). The observed satellite lines [7] related to these
excitations are sharp (small γ ). In this parameter range our
model predicts that a GW calculation yields a spurious
plasmaron, which can be cured by GW + C∗, as it has been
demonstrated by recent ab initio calculations [28].

IV. CONCLUSION

We have conducted a joint experimental and theoretical
study to understand plasmon satellites in materials very

different from the homogeneous electron gas, using graphite
as a prototype case. We have extended the calculation of the
photoemission spectra based on GW + C∗ to the case of a ma-
terial with more than one dominant collective excitation. The
comparison to state-of-the art photoemission data over a wide
range of binding energies confirms the predictive power of our
approach. We can explain in detail the photoemission spectrum
of graphite, and in particular demonstrate that it contains an
intrinsic satellite contribution caused by the π + σ plasmon,
while the π plasmon leads to a tail on the QP peak. The inter-
play of the two plasmons causes an additional broadening and
shift of the main satellite, and explains additional structures
in cases of better resolution, e.g., core levels. We also discuss
the problem of the spurious plasmaron in GW calculations,
showing that, and why, the problem does not occur in undoped
graphite, nor in undoped graphene, and why additional
excitations due to doping create a more critical scenario.
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APPENDIX: PEAK-SHIFTING EFFECT IN SPECTRA
WITH MULTIPLE SATELLITES

Here we describe in detail how one can estimate the shift
of the first main satellite in the photoemission spectrum of
graphite (roughly located at −50 eV) due to the two-plasmon
structure of the energy-loss spectrum of graphite. The spectral
function for Np = 2 is given by (1). Our aim is to compare
the position of the main satellite stemming from the σ + π

plasmon (ω2 with weight a2) to the average position that is
obtained when also the first mixed satellite (ω1 + ω2 with
weight a1a2) is taken into account.

The calculated parameters concerning the intrinsic (super-
script int) and total, i.e., intrinsic plus extrinsic and interference
(superscript eff) contributions at ω1 and ω2 are

ωj (eV) aint
j aeff

j

7.78 0.205 0.331
29.85 0.156 0.872

hence for ω1 + ω2 = 37.63 we have weights aint
1 aint

2 = 0.032
and aeff

1 aeff
2 = 0.289. These values are averaged over the

Brillouin zone. To first approximation the center of mass of the
structure composed by the π + σ and the first mixed satellite
is

ω̄ = a1a2(ω1 + ω2) + a2ω2

a1a2 + a2
. (A1)

The deviation from the main σ + π peak is defined as �ω =
|ω̄ − ω2|. We obtain

�ωint = 1.3, �ωeff = 1.9 (A2)

for the purely intrinsic and for the total shift, respectively.
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