119 research outputs found

    The effects of luteinizing hormone ablation/replacement versus steroid ablation/replacement on gene expression in the primate corpus luteum

    Get PDF
    This study was designed to provide a genome-wide analysis of the effects of luteinizing hormone (LH) versus steroid ablation/replacement on gene expression in the developed corpus luteum (CL) in primates during the menstrual cycle. On Days 9–11 of the luteal phase, female rhesus monkeys were left untreated (control) or received a GnRH antagonist Antide (A), A + LH, A + LH + the 3β-hydroxysteroid dehydrogenase inhibitor Trilostane (TRL) or A + LH + TRL + a progestin R5020. On Day 12 of the luteal phase, CL were removed and samples of RNA from individual CL were hybridized to Affymetrix™ rhesus macaque total genome microarrays. The greatest number of altered transcripts was associated with the ablation/replacement of LH, while steroid ablation/progestin replacement affected fewer transcripts. Replacement of LH during Antide treatment restored the expression of most transcripts to control levels. Validation of a subset of transcripts revealed that the expression patterns were similar between microarray and real-time PCR. Analyses of protein levels were subsequently determined for two transcripts. This is the first genome-wide analysis of LH and steroid regulation of gene transcription in the developed primate CL. Further analysis of novel transcripts identified in this data set can clarify the relative role for LH and steroids in CL maintenance and luteolysis

    The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    Get PDF
    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming
    corecore