32 research outputs found

    European Sea Bass (Dicentrarchus labrax) immune status and disease resistance are impaired by arginine dietary supplementation

    Get PDF
    Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.European Union's Seventh Framework Programme AQUAEXCEL (Aquaculture Infrastructures for Excellence in European Fish Research) [262336]; AQUAIMPROV [NORTE-07-0124-FEDER-000038]; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte) , under the National Strategic Reference Framework, through the European Regional Development Fund; North Portugal Regional Operational Programme (ON. 2 - O Novo Norte), under the National Strategic Reference Framework through the COMPETE - Operational Competitiveness Programme; Fundacao para a Ciencia e Tecnologia; Fundacao para a Ciencia e Tecnologia [SFRH/BD/89457/2012, SFRH/BPD/77210/2011]; Generalitat Valenciana through the project REVIDPAQUA [ISIC/2012/003]; [PEst-C/MAR/LA0015/2013]; [UID/Multi/04423/2013]info:eu-repo/semantics/publishedVersio

    Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+

    No full text
    The outgoing cations of Greek heulandite-rich tuff samples (heulandite type-III, 91wt.%, mica 4wt.%, feldspar 5wt. %, CEC 2.22meq/g) were analysed upon exchange with ammonium acetate using atomic absorption spectrometry (AAS). The kinetic curves of each cation were investigated over a total time of contact of 720h with sampling at frequent intervals. The materials were examined by powder X-ray diffraction, SEM-EDS, and AAS. The sorption ability was measured using the ammonium acetate saturation method. It was found that Ca2+ presents an unexpected extra-framework release and a surprisingly high degree of exchange (90%). The exchange of Mg (57%) is also worthy of note whereas the behavior of K+ showed an expected rapid initial release. The behavior of Na+ must be similar. However, its lower concentration in the zeolitic material minimizes its overall significance somewhat. On the other hand, Ca2+ and Mg2+ release is kinetically much slower, compared to that of alkali metal ions, and this phenomenon indicates that different exchange energies are needed till final equilibrium. © 2011 Elsevier Ltd
    corecore