71 research outputs found
Relationships between Levels of Serum IgE, Cell-Bound IgE, and IgE-Receptors on Peripheral Blood Cells in a Pediatric Population
Background: Elevated serum immunoglobulin (Ig) E is a diagnostic marker of immediate-type allergic reactions. We hypothesize that serum IgE does not necessarily reflect total body IgE because in vivo IgE can be bound to cell surface receptors such as FcεRI and FcεRII (CD23). The aim of this study was to analyze the relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population. Methodology: Whole blood samples from 48 children (26 boys, 22 girls, mean age 10,3±5,4 years) were analyzed by flow cytometry for FcεRI, CD23, and cell-bound IgE on dendritic cells (CD11c+MHC class II+), monocytes (CD14+), basophils (CD123+MHC class II-) and neutrophils (myeloperoxidase+). Total serum IgE was measured by ELISA and converted into z-units to account for age-dependent normal ranges. Correlations were calculated using Spearman rank correlation test. Principal Findings: Dendritic cells, monocytes, basophils, and neutrophils expressed the high affinity IgE-receptor FcεRI. Dendritic cells and monocytes also expressed the low affinity receptor CD23. The majority of IgE-receptor positive cells carried IgE on their surface. Expression of both IgE receptors was tightly correlated with cell-bound IgE. In general, cell-bound IgE on FcεRI+ cells correlated well with serum IgE. However, some patients carried high amounts of cell-bound IgE despite low total serum IgE levels. Conclusion/Significance: In pediatric patients, levels of age-adjusted serum IgE, cell-bound IgE, and FcεRI correlate. Even in the absence of elevated levels of serum IgE, cell-bound IgE can be detected on peripheral blood cells in a subgroup of patients
Astrocytes convert network excitation to tonic inhibition of neurons
<p>Abstract</p> <p>Background</p> <p>Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters.</p> <p>Results</p> <p>Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact on the excitability of pyramidal neurons in the hippocampus. We demonstrate that GABA, synthesized from the polyamine putrescine, is released from astrocytes by the reverse action of glial GABA transporter (GAT) subtypes GAT-2 or GAT-3. GABA release can be prevented by blocking glutamate uptake with the non-transportable inhibitor DHK, confirming that it is the glutamate transporter activity that triggers the reversal of GABA transporters, conceivably by elevating the intracellular Na<sup>+ </sup>concentration in astrocytes. The released GABA significantly contributes to the tonic inhibition of neurons in a network activity-dependent manner. Blockade of the Glu/GABA exchange mechanism increases the duration of seizure-like events in the low-[Mg<sup>2+</sup>] <it>in vitro </it>model of epilepsy. Under <it>in vivo </it>conditions the increased GABA release modulates the power of gamma range oscillation in the CA1 region, suggesting that the Glu/GABA exchange mechanism is also functioning in the intact hippocampus under physiological conditions.</p> <p>Conclusions</p> <p>The results suggest the existence of a novel molecular mechanism by which astrocytes transform glutamat<it>ergic </it>excitation into GABA<it>ergic </it>inhibition providing an adjustable, <it>in situ </it>negative feedback on the excitability of neurons.</p
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
Phosphorylation of synapsin I and MARCKS in nerve terminals is mediated by Ca2+ entry via an Aga-GI sensitive Ca2+ channel which is coupled to glutamate exocytosis
AbstractCa2+ entry is a prerequisite for both exocytosis and the phosphorylation of synapsin I and MARCKS proteins in mammalian cerebrocortical synaptosomes. The novel spider toxin Aga-GI completely blocks KCl-evoked glutamate exocytosis but only partially inhibits KCl-evoked cytoplasmic Ca2+ elevations, thus revealing at least two pathways for KCl-induced Ca2+ entry. Aga-GI completely attenuates KCl-induced phosphorylation of synapsin I and MARCKS proteins. We therefore conclude that both exocytosis and the phosphorylation of synapsin I and MARCKS proteins are specifically coupled to Ca2+ entry via a subset of voltage dependent Ca2+ channels at the nerve terminal which are sensitive to Aga-GI
Inhibition of Ca2+/calmodulin-dependent protein kinase II by arachidonic acid and its metabolites.
A variety of evidence indicates that activation of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) in nerve terminals leads to enhanced neurotransmitter release. Arachidonic acid and its 12-lipoxygenase metabolite, 12-hydroperoxyeicosatetraenoic acid (12-HPETE), have been suggested to act as second messengers mediating presynaptic inhibition of neurotransmitter release. In the present study it was found that CaM-kinase II, purified from rat brain cortex, was inhibited both by arachidonic acid (IC50 = 24 microM) and by 12-HPETE (IC50 = 0.7 microM). Neither substance inhibited CaM-kinase I or III, protein kinase C, or the catalytic subunit of cAMP-dependent protein kinase. Specific inhibition of Ca2+/calmodulin-dependent protein phosphorylation by arachidonic acid was also demonstrated in intact synaptic terminals (synaptosomes) isolated from rat forebrain. These results suggest that arachidonate and its metabolites may modulate synaptic function through the inhibition of CaM-kinase II-dependent protein phosphorylation
- …