15 research outputs found

    Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 647, doi:10.3389/fmicb.2014.00647.The Southern Ocean is currently subject to intense investigations, mainly related to its importance for global biogeochemical cycles and its alarming rate of warming in response to climate change. Microbes play an essential role in the functioning of this ecosystem and are the main drivers of the biogeochemical cycling of elements. Yet, the diversity and abundance of microorganisms in this system remain poorly studied, in particular with regards to changes along environmental gradients. Here, we used amplicon sequencing of 16S rRNA gene tags using primers covering both Bacteria and Archaea to assess the composition and diversity of the microbial communities from four sampling depths (surface, the maximum and minimum of the oxygen concentration, and near the seafloor) at 10 oceanographic stations located in Bransfield Strait [northwest of the Antarctic Peninsula (AP)] and near the sea ice edge (north of the AP). Samples collected near the seafloor and at the oxygen minimum exhibited a higher diversity than those from the surface and oxygen maximum for both bacterial and archaeal communities. The main taxonomic groups identified below 100 m were Thaumarchaeota, Euryarchaeota and Proteobacteria (Gamma-, Delta-, Beta-, and Alphaproteobacteria), whereas in the mixed layer above 100 m Bacteroidetes and Proteobacteria (mainly Alpha- and Gammaproteobacteria) were found to be dominant. A combination of environmental factors seems to influence the microbial community composition. Our results help to understand how the dynamic seascape of the Southern Ocean shapes the microbial community composition and set a baseline for upcoming studies to evaluate the response of this ecosystem to future changes.This work was supported by the Brazilian National Counsel of Technological and Scientific Development (Polar Canion CNPq 556848/2009-8, ProOasis CNPq 565040/2010-3, Interbiota CNPq 407889/2013-2 and INCT-MAR-COI). Alex Enrich-Prast received a CNPq Productivity fellowship. Camila N. Signori was supported by a WHOI Mary Sears Visitor Award (for the microbial community analyses) and by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) for the “Doctorate Sandwich” scholarship (n. 18835/12-0)

    High Prevalence of Gammaproteobacteria in the Sediments of Admiralty Bay and North Bransfield Basin, Northwestern Antarctic Peninsula

    Get PDF
    Microorganisms dominate most Antarctic marine ecosystems, in terms of biomass and taxonomic diversity, and play crucial role in ecosystem functioning due to their high metabolic plasticity. Admiralty Bay is the largest bay on King George Island (South Shetland Islands, Antarctic Peninsula) and a combination of hydro-oceanographic characteristics (bathymetry, sea ice and glacier melting, seasonal entrance of water masses, turbidity, vertical fluxes) create conditions favoring organic carbon deposition on the seafloor and microbial activities. We sampled surface sediments from 15 sites across Admiralty Bay (100502 m total depth) and the adjacent North Bransfield Basin (6931147 m), and used the amplicon 454-sequencing of 16S rRNA gene tags to compare the bacterial composition, diversity, and microbial community structure across environmental parameters (sediment grain size, pigments and organic nutrients) between the two areas. Marine sediments had a high abundance of heterotrophic Gammaproteobacteria (92.4% and 83.8% inside and outside the bay, respectively), followed by Alphaproteobacteria (2.5 and 5.5%), Firmicutes (1.5 and 1.6%), Bacteroidetes (1.1 and 1.7%), Deltaproteobacteria (0.8 and 2.5%) and Actinobacteria (0.7 and 1.3%). Differences in alpha-diversity and bacterial community structure were found between the two areas, reflecting the physical and chemical differences in the sediments, and the organic matter input.Brazilian National Council for Scientific and Technological Development - CNPq (MABIREH/IPY/CAML)CAPES-Master's fellowshipUniv Sao Paulo, Inst Oceanog, Dept Oceanog Biol, Sao Paulo, BrazilUniv Fed Santa Catarina, Ctr Ciencias Biol, Florianopolis, SC, BrazilUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Dept Ciencias Ambientais, Diadema, BrazilUniv Fed Rio de Janeiro, Inst Biol, Dept Zool, Rio De Janeiro, BrazilUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Dept Ciencias Ambientais, Diadema, BrazilCNPq (MABIREH/IPY/CAML): 520293/2006-1Web of Scienc

    Antarctic ecosystems in transition – life between stresses and opportunities

    Get PDF
    Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services

    Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula

    No full text
    Seasonal changes in taxonomic and functional diversity of microbial communities in polar regions are commonly observed, requiring strategies of microbes to adapt to the corresponding changes in environmental conditions. These natural fluctuations form the backdrop for changes induced by anthropogenic impacts. The main goal of this study was to assess the seasonal and temporal changes in bacterial and archaeal diversity and community structure off the northern Antarctic Peninsula over several seasons (spring, summer, autumn) from 2013 to 2015. Ten monitoring stations were selected across the Gerlache and Bransfield Straits and nearby Elephant Island, and archaeal and bacterial communities examined by amplicon sequencing of 16S rRNA genes. Alpha-diversity indices were higher in spring and correlated significantly with temperature. Spring was characterized by the presence of SAR11, and microbial communities remaining from winter, including representatives of Thaumarchaeota (Nimosopurnilus), Euryarchaeota, members of Oceanospirillales, SAR324. Summer and autumn were characterized by a high prevalence of Flavobacteria (NS5 marine group and Polaribacter), Alphaproizobacteria (Rhodobacterales and SAR11 Glade) and Gammaproteobacteria (Oceanospirillales/Balneatrix and Celivibrionales), generally known to be associated with organic matter degradation. Relatively higher abundance of phytoplankton groups occurred in spring, mainly characterized by the presence of the haptophyte Phaeocystis and the diatom Corethron, influencing the succession of heterotrophic bacterial communities. Microbial diversity and community structure varied significantly over time, but not over space, i.e., were similar between monitoring stations for the same time. In addition, the observed interannual variability in microbial community structure might be related to an increase in sea surface temperature. Environmental conditions related to seasonal variation, including temperature and most likely phytoplankton derived organic matter, appear to have triggered the observed shifts in microbial communities in the waters off the northern Antarctic Peninsula.Funding Agencies|Project INTERBIOTA (CNPq) [407889/2013-2]; INCT-MAR-COI (CNPq); CNPq; FAPERJ; Investment in Science Funds at WHOI; Scientific Committee on Antarctic Research (SCAR) Fellowship; Sao Paulo Research Foundation [FAPESP 2016/16183-5]</p

    Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula

    No full text
    Seasonal changes in taxonomic and functional diversity of microbial communities in polar regions are commonly observed, requiring strategies of microbes to adapt to the corresponding changes in environmental conditions. These natural fluctuations form the backdrop for changes induced by anthropogenic impacts. The main goal of this study was to assess the seasonal and temporal changes in bacterial and archaeal diversity and community structure off the northern Antarctic Peninsula over several seasons (spring, summer, autumn) from 2013 to 2015. Ten monitoring stations were selected across the Gerlache and Bransfield Straits and nearby Elephant Island, and archaeal and bacterial communities examined by amplicon sequencing of 16S rRNA genes. Alpha-diversity indices were higher in spring and correlated significantly with temperature. Spring was characterized by the presence of SAR11, and microbial communities remaining from winter, including representatives of Thaumarchaeota (Nimosopurnilus), Euryarchaeota, members of Oceanospirillales, SAR324. Summer and autumn were characterized by a high prevalence of Flavobacteria (NS5 marine group and Polaribacter), Alphaproizobacteria (Rhodobacterales and SAR11 Glade) and Gammaproteobacteria (Oceanospirillales/Balneatrix and Celivibrionales), generally known to be associated with organic matter degradation. Relatively higher abundance of phytoplankton groups occurred in spring, mainly characterized by the presence of the haptophyte Phaeocystis and the diatom Corethron, influencing the succession of heterotrophic bacterial communities. Microbial diversity and community structure varied significantly over time, but not over space, i.e., were similar between monitoring stations for the same time. In addition, the observed interannual variability in microbial community structure might be related to an increase in sea surface temperature. Environmental conditions related to seasonal variation, including temperature and most likely phytoplankton derived organic matter, appear to have triggered the observed shifts in microbial communities in the waters off the northern Antarctic Peninsula.Funding Agencies|Project INTERBIOTA (CNPq) [407889/2013-2]; INCT-MAR-COI (CNPq); CNPq; FAPERJ; Investment in Science Funds at WHOI; Scientific Committee on Antarctic Research (SCAR) Fellowship; Sao Paulo Research Foundation [FAPESP 2016/16183-5]</p

    The Partitioning of Carbon Biomass among the Pico- and Nano-plankton Community in the South Brazilian Bight during a Strong Summer Intrusion of South Atlantic Central Water

    No full text
    To investigate how pico- and nano-plankton respond to oceanographic conditions in the Southwestern Atlantic Ocean, we assessed the influence of a summer intrusion of the South Atlantic Central Water (SACW) on the spatial and vertical dynamics of planktonic abundance and carbon biomass across environmental gradients. Seawater samples were collected from six depths within the euphotic zone at nine oceanographic stations in a transect on the Brazilian continental shelf in January 2013. The abundance of pico- and nano-plankton populations was determined by flow cytometry, and carbon biomass was calculated based on conversion factors from the literature. The autotrophic Synechococcus spp., picoeukaryotes, and nanoeukaryotes were more abundant in the surface layers of the innermost stations influenced by Coastal Water (maximum of 1.19 × 105, 1.5 × 104, and 8.61 × 103 cell·mL−1, respectively), whereas Prochlorococcus spp. dominated (max. of 6.57 × 104 cell·mL−1) at the outermost stations influenced by Tropical Water and in the uplifting layers of the SACW around a depth of 100 m. Numerically, heterotrophic bacterial populations were predominant, with maximum concentrations (2.11 × 106 cell·mL−1) recorded in the surface layers of the inner and mid shelves in Coastal Water and the upper limits of the SACW. Nutrient-rich (high silicate and phosphate) and relatively less saline waters enhanced the picoeukaryotic biomass, while Synechococcus and heterotrophic bacteria were linked to higher temperatures, lower salinities, and higher inputs of ammonia and dissolved organic carbon. The relative importance of each group to carbon biomass partitioning under upwelling conditions is led by heterotrophic bacteria, followed by picoeukaryotes, Synechococcus and Prochlorococcus, and when the SACW is not as influential, the relative contribution of each phytoplanktonic group is more evenly distributed. In addition to habitat preferences, the physical structure of oligotrophic waters has a large impact on the vertical and spatial distribution patterns of picoplankton, reflecting the strong effect of the SACW intrusion

    A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    No full text
    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions

    Table_2_A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica.XLSX

    No full text
    <p>Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.</p

    Image_1_A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica.TIF

    No full text
    <p>Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.</p
    corecore