24 research outputs found

    An assessment of stream fish vulnerability and an evaluation of conservation networks in Missouri

    Get PDF
    Stream fish species in Missouri are being exposed to habitat degradation, as well as increases in stream temperature and alterations to the flow regime due to climate change. These threats are likely to have negative consequences on aquatic biodiversity. In order to conserve these species it is important to determine which species are the most vulnerable, and to identify where the best opportunities for conservation and management exist. Two indices to assess stream fish vulnerability were developed and compared. Both indices accounted for species tolerance of habitat degradation, warming stream temperatures, and alterations to the flow regime, as well as factors such as dispersal ability, range size, rarity, and the level of fragmentation of the species habitat. One index used measured species responses to assess environmental tolerances, while the other used trait associations. Species exhibited a range of vulnerabilities, and differences were observed based on whether traits or measured responses were used. A systematic conservation planning tool was used to identify the best areas for stream fish conservation within and complementary to Missouri�s conservation networks. Valuable areas were identified across the state, but the majority of high value stream segments were located in the Ozarks subregion. In addition to providing information to aid in the management and conservation of Missouri�s stream species, these frameworks for assessing stream fish vulnerability and prioritizing stream conservation could be adapted for use in other regions

    PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model.

    Get PDF
    MotivationElectronic health records (EHRs) are quickly becoming omnipresent in healthcare, but interoperability issues and technical demands limit their use for biomedical and clinical research. Interactive and flexible software that interfaces directly with EHR data structured around a common data model (CDM) could accelerate more EHR-based research by making the data more accessible to researchers who lack computational expertise and/or domain knowledge.ResultsWe present PatientExploreR, an extensible application built on the R/Shiny framework that interfaces with a relational database of EHR data in the Observational Medical Outcomes Partnership CDM format. PatientExploreR produces patient-level interactive and dynamic reports and facilitates visualization of clinical data without any programming required. It allows researchers to easily construct and export patient cohorts from the EHR for analysis with other software. This application could enable easier exploration of patient-level data for physicians and researchers. PatientExploreR can incorporate EHR data from any institution that employs the CDM for users with approved access. The software code is free and open source under the MIT license, enabling institutions to install and users to expand and modify the application for their own purposes.Availability and implementationPatientExploreR can be freely obtained from GitHub: https://github.com/BenGlicksberg/PatientExploreR. We provide instructions for how researchers with approved access to their institutional EHR can use this package. We also release an open sandbox server of synthesized patient data for users without EHR access to explore: http://patientexplorer.ucsf.edu.Supplementary informationSupplementary data are available at Bioinformatics online

    The U.S. Inland Creel and Angler Survey Catalog (CreelCat): Development, Applications, and Opportunities

    Get PDF
    Inland recreational fishing, defined as primarily leisure-driven fishing in freshwaters, is a popular pastime in the USA. State natural resource agencies endeavor to provide high-quality and sustainable fishing opportunities for anglers. Managers often use creel and other angler survey data to inform state- and waterbody-level management efforts. Despite the broad implementation of angler surveys and their importance to fisheries management at state scales, regional and national coordination among these activities is minimal, limiting data applicability for larger-scale management practices and research. Here, we introduce the U.S. Inland Creel and Angler Survey Catalog (CreelCat), a first-of-its-kind, publicly available national database of angler survey data that establishes a baseline of national inland recreational fishing metrics. We highlight research and management applications to help support sustainable inland recreational fishing practices, consider cautions, and make recommendations for implementation

    Predicting Academic Performance: A Systematic Literature Review

    Get PDF
    The ability to predict student performance in a course or program creates opportunities to improve educational outcomes. With effective performance prediction approaches, instructors can allocate resources and instruction more accurately. Research in this area seeks to identify features that can be used to make predictions, to identify algorithms that can improve predictions, and to quantify aspects of student performance. Moreover, research in predicting student performance seeks to determine interrelated features and to identify the underlying reasons why certain features work better than others. This working group report presents a systematic literature review of work in the area of predicting student performance. Our analysis shows a clearly increasing amount of research in this area, as well as an increasing variety of techniques used. At the same time, the review uncovered a number of issues with research quality that drives a need for the community to provide more detailed reporting of methods and results and to increase efforts to validate and replicate work.Peer reviewe

    CreelCat, a Catalog of United States Inland Creel and Angler Survey Data

    No full text
    Abstract The United States Inland Creel and Angler Survey Catalog (CreelCat) contains a national compilation of angler and creel survey data collected by natural resource management agencies across the United States (including Washington, D.C. and Puerto Rico). These surveys are used to help inform the management of recreational fisheries, by collecting information about anglers including what they are catching and harvesting, the amount of effort they expend, their angling preferences, and demographic information. As of May 1, 2023, CreelCat houses over 14,729 surveys from 33 states, Puerto Rico, and Washington, D.C., comprising 235 data fields across 8 tables. These tables contain 235,015 records of fish catch and harvest metrics, 27,250 angler preference metrics, 14,729 records of survey characteristics, 13,576 records of effort metrics, and 409 records of angler demographics. Though individual creel surveys are often deployed to meet local science and management objectives, creel data aggregated across jurisdictions has the potential to address larger scale research and management needs

    The effect of change in body mass index on volumetric measures of mammographic density.

    No full text
    BackgroundUnderstanding how changes in body mass index (BMI) relate to changes in mammographic density is necessary to evaluate adjustment for BMI gain/loss in studies of change in density and breast cancer risk. Increase in BMI has been associated with a decrease in percent density, but the effect on change in absolute dense area or volume is unclear.MethodsWe examined the association between change in BMI and change in volumetric breast density among 24,556 women in the San Francisco Mammography Registry from 2007 to 2013. Height and weight were self-reported at the time of mammography. Breast density was assessed using single x-ray absorptiometry measurements. Cross-sectional and longitudinal associations between BMI and dense volume (DV), non-dense volume (NDV), and percent dense volume (PDV) were assessed using multivariable linear regression models, adjusted for demographics, risk factors, and reproductive history.ResultsIn cross-sectional analysis, BMI was positively associated with DV [β, 2.95 cm(3); 95% confidence interval (CI), 2.69-3.21] and inversely associated with PDV (β, -2.03%; 95% CI, -2.09, -1.98). In contrast, increasing BMI was longitudinally associated with a decrease in both DV (β, -1.01 cm(3); 95% CI, -1.59, -0.42) and PDV (β, -1.17%; 95% CI, -1.31, -1.04). These findings were consistent for both pre- and postmenopausal women.ConclusionOur findings support an inverse association between change in BMI and change in PDV. The association between increasing BMI and decreasing DV requires confirmation.ImpactLongitudinal studies of PDV and breast cancer risk, or those using PDV as an indicator of breast cancer risk, should evaluate adjustment for change in BMI

    The Effect of Change in Body Mass Index on Volumetric Measures of Mammographic Density

    No full text
    BACKGROUND: Understanding how changes in body mass index (BMI) relate to changes in mammographic density is necessary to evaluate adjustment for BMI gain/loss in studies of change in density and breast cancer risk. Increase in BMI has been associated with a decrease in percent density, but the effect on change in absolute dense area or volume is unclear. METHODS: We examined the association between change in BMI and change in volumetric breast density among 24,556 women in the San Francisco Mammography Registry from 2007-2013. Height and weight were self-reported at the time of mammography. Breast density was assessed using single x-ray absorptiometry measurements. Cross-sectional and longitudinal associations between BMI and dense volume (DV), non-dense volume (NDV) and percent dense volume (PDV) were assessed using multivariable linear regression models, adjusted for demographics, risk factors, and reproductive history. RESULTS: In cross-sectional analysis, BMI was positively associated with DV (β=2.95 cm(3), 95% CI 2.69, 3.21) and inversely associated with PDV (β=-2.03%, 95% CI -2.09, -1.98). In contrast, increasing BMI was longitudinally associated with a decrease in both DV (β=-1.01 cm(3), 95% CI -1.59, -0.42) and PDV (β=-1.17%, 95% CI -1.31, -1.04). These findings were consistent for both pre- and postmenopausal women. CONCLUSION: Our findings support an inverse association between change in BMI and change in PDV. The association between increasing BMI and decreasing DV requires confirmation. IMPACT: Longitudinal studies of PDV and breast cancer risk, or those using PDV as an indicator of breast cancer risk, should evaluate adjustment for change in BMI
    corecore