78 research outputs found

    Extended dividend, cash flow and residual income valuation models: Accounting for deviations from ideal conditions

    Get PDF
    Standard equity valuation approaches (i.e., DDM, RIM, and DCF model) are derived under the assumption of ideal conditions, such as infinite payoffs and clean surplus accounting. Because these conditions are hardly ever met, we extend the standard approaches, based on the fundamental principle of financial statement articulation. The extended models are then tested empirically by employing two sets of forecasts: (1) analyst forecasts provided by Value Line and (2) forecasts generated by cross-sectional regression models. The main result is that our extended models yield considerably smaller valuation errors. Moreover, by construction, identical value estimates are obtained across the extended models. By reestablishing empirical equivalence under non-ideal conditions, our approach provides a benchmark that enables us to quantify the errors resulting from individual deviations from ideal conditions, and thus, to analyze the robustness of the standard approaches. Finally, by providing a level playing field for the different valuation approaches, our findings have implications for other empirical settings, for example, estimating the implied cost of capital. --Dirty Surplus,Terminal Value,Steady-State,Valuation Error

    Kinetic phenomena in mechanochemical depolymerization of poly(styrene

    Get PDF
    Please click Additional Files below to see the full abstract

    Is the Lecompte technique the last word on transposition of the great arteries repair for all patients? A magnetic resonance imaging study including a spiral technique two decades postoperatively.

    Get PDF
    ObjectivesTo compare the Lecompte technique and the spiral anastomosis (complete anatomic correction) two decades after arterial switch operation (ASO).MethodsNine patients after primary ASO with Lecompte and 6 selected patients after spiral anastomosis were evaluated 20.8 ± 2.1 years after ASO versus matched controls. Blood flow dynamics and flow profiles (e.g. vorticity, helicity) in the great arteries were quantified from time-resolved 3D magnetic resonance imaging (MRI) phase contrast flow measurements (4D flow MR) in addition to a comprehensive anatomical and functional cardiovascular MRI analysis.ResultsCompared with spiral reconstruction, patients with Lecompte showed more vortex formation, supranatural helical blood flow (relative helicity in aorta: 0.036 vs 0.089; P < 0.01), a reduced indexed cross-sectional area of the left pulmonary artery (155 vs 85 mm²/m²; P < 0.001) and more semilunar valve dysfunctions (n = 5 vs 1). There was no difference in elastic aortic wall properties, ventricular function, myocardial perfusion and myocardial fibrosis between the two groups. Cross-sectional area of the aortic sinus was larger in patients than in controls (669 vs 411 mm²/m²; P < 0.01). In the spiral group, the pulmonary root was rotated after ASO more towards the normal left position (P < 0.01).ConclusionsIn this study, selected patients with spiral anastomoses showed, two decades after ASO, better physiologically adapted blood flow dynamics, and attained a closer to normal anatomical position of their great arteries, as well as less valve dysfunction. Considering the limitations related to the small number of patients and the novel MRI imaging techniques, these data may provoke reconsidering the optimal surgical approaches to transposition of the great arteries repair

    Investigation into the role of an extracellular loop in mediating proton-evoked inhibition of voltage-gated sodium channels

    Get PDF
    Proton-evoked activation of sensory neurons is counteracted by inhibition of voltage-gated Na+ channels, and the low acid-sensitivity of sensory neuron of the African naked mole-rat (ANMr) was reported to be due to a strong proton-evoked block of ANMrNav1.7. Here we aimed to reevaluate the role of the suggested negatively-charged motif in the ANMrNav1.7 domain IV P-loop for inhibition by protons. Patch clamp recordings were performed on the recombinant α-subunits Nav1.2–1.8. The insertion of the negatively charged motif (EKE) of ANMrNav1.7 into human Nav1.7 results in an increased proton-evoked tonic inhibition, but also in a reduced channel function. While the voltage-dependency of fast inactivation is changed in hNav1.7-EKE, pH 6.4 fails to induce a significant shift in both constructs. Proton-evoked inhibition of other channel α-subunits reveals a discrete differential inhibition among α-subunits with hNav1.7 displaying the lowest proton-sensitivity. The mutant hNav1.7-EKE displays a similar proton-sensitivity as Nav1.2, Nav1.3, Nav1.6 and Nav1.8. Overall, a correlation between proton-evoked inhibition and motif charge was not evident. Accordingly, a homology model of hNav1.7 shows that the EKE motif residues do not contribute to the pore lumen. Our data confirms that a negative charge of a postulated proton-motif encodes for a high proton-sensitivity when inserted into hNav1.7. However, a negatively charged motif is not a reliable predictor for a high proton-sensitivity in other α-subunits. Given the distance of the proton-motif from the pore mouth it seems unlikely that a blocking mechanism involving direct obstruction of the pore underlies the observed proton-evoked channel inhibition

    COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies: I. Relations between H2, HI, stellar content and structural properties

    Get PDF
    We are conducting COLD GASS, a legacy survey for molecular gas in nearby galaxies. Using the IRAM 30m telescope, we measure the CO(1-0) line in a sample of ~350 nearby (D=100-200 Mpc), massive galaxies (log(M*/Msun)>10.0). The sample is selected purely according to stellar mass, and therefore provides an unbiased view of molecular gas in these systems. By combining the IRAM data with SDSS photometry and spectroscopy, GALEX imaging and high-quality Arecibo HI data, we investigate the partition of condensed baryons between stars, atomic gas and molecular gas in 0.1-10L* galaxies. In this paper, we present CO luminosities and molecular hydrogen masses for the first 222 galaxies. The overall CO detection rate is 54%, but our survey also uncovers the existence of sharp thresholds in galaxy structural parameters such as stellar mass surface density and concentration index, below which all galaxies have a measurable cold gas component but above which the detection rate of the CO line drops suddenly. The mean molecular gas fraction MH2/M* of the CO detections is 0.066+/-0.039, and this fraction does not depend on stellar mass, but is a strong function of NUV-r colour. Through stacking, we set a firm upper limit of MH2/M*=0.0016+/-0.0005 for red galaxies with NUV-r>5.0. The average molecular-to-atomic hydrogen ratio in present-day galaxies is 0.3, with significant scatter from one galaxy to the next. The existence of strong detection thresholds in both the HI and CO lines suggests that "quenching" processes have occurred in these systems. Intriguingly, atomic gas strongly dominates in the minority of galaxies with significant cold gas that lie above these thresholds. This suggests that some re-accretion of gas may still be possible following the quenching event.Comment: Accepted for publications in MNRAS. 32 pages, 25 figure

    COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies: II. The non-universality of the Molecular Gas Depletion Timescale

    Full text link
    We study the relation between molecular gas and star formation in a volume-limited sample of 222 galaxies from the COLD GASS survey, with measurements of the CO(1-0) line from the IRAM 30m telescope. The galaxies are at redshifts 0.025<z<0.05 and have stellar masses in the range 10.0<log(M*/Msun)<11.5. The IRAM measurements are complemented by deep Arecibo HI observations and homogeneous SDSS and GALEX photometry. A reference sample that includes both UV and far-IR data is used to calibrate our estimates of star formation rates from the seven optical/UV bands. The mean molecular gas depletion timescale, tdep(H2), for all the galaxies in our sample is 1 Gyr, however tdep(H2) increases by a factor of 6 from a value of ~0.5 Gyr for galaxies with stellar masses of 10^10 Msun to ~3 Gyr for galaxies with masses of a few times 10^11 Msun. In contrast, the atomic gas depletion timescale remains contant at a value of around 3 Gyr. This implies that in high mass galaxies, molecular and atomic gas depletion timescales are comparable, but in low mass galaxies, molecular gas is being consumed much more quickly than atomic gas. The strongest dependences of tdep(H2) are on the stellar mass of the galaxy (parameterized as log tdep(H2)= (0.36+/-0.07)(log M* - 10.70)+(9.03+/-0.99)), and on the specific star formation rate. A single tdep(H2) versus sSFR relation is able to fit both "normal" star-forming galaxies in our COLD GASS sample, as well as more extreme starburst galaxies (LIRGs and ULIRGs), which have tdep(H2) < 10^8 yr. Normal galaxies at z=1-2 are displaced with respect to the local galaxy population in the tdep(H2) versus sSFR plane and have molecular gas depletion times that are a factor of 3-5 times longer at a given value of sSFR due to their significantly larger gas fractions.Comment: Accepted for publication in MNRAS. 19 pages, 11 figure

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Biofuels: Current Technology and New Developments

    No full text
    2010 program of the “Open Forum on Energy and the Environment”, presented on October 7, 2010, from 4:00 PM-5:00 PM in room L1255, Ford Environmental Science & Technology Building (ES&T) on the Georgia Tech campus.Runtime: 50:41 minutesThe development of production routes for fuels and chemicals from alternative resources (e.g. coal, gas, biomass) is one of the great scientific challenges of the 21st century. Biomass is a particularly interesting resource because it is CO2 neutral and the only renewable source of organic carbon. Different types of biomass and processes for their conversion will be introduced. Biodiesel and bioethanol will be discussed as case studies for processes that are currently operated on a commercial scale. Promising alternatives based on hydrolysis and fermentation, pyrolysis as well as gasification will be presented
    corecore