419 research outputs found

    Spontaneous breaking of superconformal invariance in (2+1)D supersymmetric Chern-Simons-matter theories in the large N limit

    Full text link
    In this work it is studied the spontaneous breaking of superconformal and gauge invariances in the Abelian N=1,2 three-dimensional supersymmetric Chern-Simons-matter theories in a large N limit. It is computed the K\"ahlerian effective superpotential at subleading order and shown that the Coleman-Weinberg mechanism is the responsible for the dynamical generation of a mass scale in the N=1 model. This effect appears due to two-loop diagrams that are logarithmic divergent. In particular, the Coleman-Weinberg mechanism fails when we lift the N=1 to N=2 Supersymmetric Chern-Simons-Matter model, like what happens in a perturbative expansion in the coupling constants.Comment: 10 pages, 2 figures, PLB versio

    Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study

    Get PDF
    We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described in [S. Tanveer, Phil. Trans. R. Soc. Lond. A 343, 155 (1993)]and [M. Siegel, and S. Tanveer, Phys. Rev. Lett. 76, 419 (1996)] as well as direct numerical computation, following the numerical scheme of [T. Hou, J. Lowengrub, and M. Shelley,J. Comp. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (non-singular) zero surface tension solutions. The effect is present even when the relevant zero surface tension solution has asymptotic behavior consistent with selection theory.Such singular effects therefore cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structually unstable flow, restoring the hyperbolicity of multifinger fixed points.Comment: 16 pages, 15 figures, submitted to Phys. Rev

    Absence of squirt singularities for the multi-phase Muskat problem

    Get PDF
    In this paper we study the evolution of multiple fluids with different constant densities in porous media. This physical scenario is known as the Muskat and the (multi-phase) Hele-Shaw problems. In this context we prove that the fluids do not develop squirt singularities.Comment: 16 page

    Cyclotomic integers, fusion categories, and subfactors

    Get PDF
    Dimensions of objects in fusion categories are cyclotomic integers, hence number theoretic results have implications in the study of fusion categories and finite depth subfactors. We give two such applications. The first application is determining a complete list of numbers in the interval (2, 76/33) which can occur as the Frobenius-Perron dimension of an object in a fusion category. The smallest number on this list is realized in a new fusion category which is constructed in the appendix written by V. Ostrik, while the others are all realized by known examples. The second application proves that in any family of graphs obtained by adding a 2-valent tree to a fixed graph, either only finitely many graphs are principal graphs of subfactors or the family consists of the A_n or D_n Dynkin diagrams. This result is effective, and we apply it to several families arising in the classification of subfactors of index less then 5.Comment: 47 pages, with an appendix by Victor Ostri

    Gravitational anomaly and fundamental forces

    Full text link
    I present an argument, based on the topology of the universe, why there are three generations of fermions. The argument implies a preferred gauge group of SU(5), but with SO(10) representations of the fermions. The breaking pattern SU(5) to SU(3)xSU(2)xU(1) is preferred over the pattern SU(5) to SU(4)xU(1). On the basis of the argument one expects an asymmetry in the early universe microwave data, which might have been detected already.Comment: Contribution to the 2nd School and Workshop on Quantum Gravity and Quantum Geometry. Corfu, september 13-20 2009. 10 page

    Detection model based on representation of quantum particles by classical random fields: Born's rule and beyond

    Full text link
    Recently a new attempt to go beyond quantum mechanics (QM) was presented in the form of so called prequantum classical statistical field theory (PCSFT). Its main experimental prediction is violation of Born's rule which provides only an approximative description of real probabilities. We expect that it will be possible to design numerous experiments demonstrating violation of Born's rule. Moreover, recently the first experimental evidence of violation was found in the triple slits interference experiment, see \cite{WWW}. Although this experimental test was motivated by another prequantum model, it can be definitely considered as at least preliminary confirmation of the main prediction of PCSFT. In our approach quantum particles are just symbolic representations of "prequantum random fields," e.g., "electron-field" or "neutron-field"; photon is associated with classical random electromagnetic field. Such prequantum fields fluctuate on time and space scales which are essentially finer than scales of QM, cf. `t Hooft's attempt to go beyond QM \cite{H1}--\cite{TH2}. In this paper we elaborate a detection model in the PCSFT-framework. In this model classical random fields (corresponding to "quantum particles") interact with detectors inducing probabilities which match with Born's rule only approximately. Thus QM arises from PCSFT as an approximative theory. New tests of violation of Born's rule are proposed.Comment: Relation with recent experiment on violation of Born's rule in the triple slit experiment is discussed; new experimental test which might confirm violation of Born's rule are presented (double stochsticity test and interference magnitude test); the problem of "double clicks" is discusse

    Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton

    Get PDF
    Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models

    Remarks on symplectic twistor spaces

    Full text link
    We consider some classical fibre bundles furnished with almost complex structures of twistor type, deduce their integrability in some cases and study \textit{self-holomorphic} sections of a \textit{symplectic} twistor space. With these we define a moduli space of ω\omega-compatible complex structures. We recall the theory of flag manifolds in order to study the Siegel domain and other domains alike, which is the fibre of the referred twistor space. Finally the structure equations for the twistor of a Riemann surface with the canonical symplectic-metric connection are deduced, based on a given conformal coordinate on the surface. We then relate with the moduli space defined previously.Comment: 20 pages, title changed since v2, accepted in AMPA toda

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc
    • …
    corecore