75 research outputs found

    Human-animal chimeras for vaccine development: an endangered species or opportunity for the developing world?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the field of vaccines for diseases such as Human Immunodeficiency Virus (HIV) which take a heavy toll in developing countries has faced major failures. This has led to a call for more basic science research, and development as well as evaluation of new vaccine candidates. Human-animal chimeras, developed with a 'humanized' immune system could be useful to study infectious diseases, including many neglected diseases. These would also serve as an important tool for the efficient testing of new vaccine candidates to streamline promising candidates for further trials in humans. However, developing human-animal chimeras has proved to be controversial.</p> <p>Discussion</p> <p>Development of human-animal chimeras for vaccine development has been slowed down because of opposition by some philosophers, ethicists and policy makers in the west-they question the moral status of such animals, and also express discomfort about transgression of species barriers. Such opposition often uses a contemporary western world view as a reference point. Human-animal chimeras are often being created for diseases which cause significantly higher morbidity and mortality in the developing world as compared to the developed world. We argue in our commentary that given this high disease burden, we should look at socio-cultural perspectives on human-animal chimera like beings in the developing world. On examination, it's clear that such beings have been part of mythology and cultural descriptions in many countries in the developing world.</p> <p>Summary</p> <p>To ensure that important research on diseases afflicting millions like malaria, HIV, Hepatitis-C and dengue continues to progress, we recommend supporting human-animal chimera research for vaccine development in developing countries (especially China and India which have growing technical expertise in the area). The negative perceptions in some parts of the west about human-animal chimeras can be used as an opportunity for nurturing important vaccine development research in the developing world.</p

    Do airway metallic stents for benign lesions confer too costly a benefit?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of self-expanding metallic stents (SEMAS) in the treatment benign airway obstruction is controversial.</p> <p>Methods</p> <p>To evaluate the safety and efficacy of SEMAS for this indication, we conducted a 10-year retrospective review at our tertiary medical centre.</p> <p>Results</p> <p>Using flexible bronchoscopy, 82 SEMAS (67% Ultraflex, 33% Wallstent) were placed in 35 patients with inoperable lesions, many with significant medical comorbidities (88%). 68% of stents were tracheal, and 83% of patients showed immediate symptomatic improvement. Reversible complications developed in 9% of patients within 24 hrs of stent placement. Late complications (>24 hrs) occurred in 77% of patients, of which 37% were clinically significant or required an interventional procedure. These were mainly due to stent migration (12.2%), fracture (19.5%), or obstructive granulomas (24.4%). The overall granuloma rate of 57% was higher at tracheal sites (59%) than bronchial ones (34%), but not significantly different between Ultraflex and Wallstents. Nevertheless, Wallstents were associated with higher rates of bleeding (5% vs. 30%, p = 0.005) and migration (7% vs. 26%, p = 0.026). Of 10 SEMAS removed using flexible bronchoscopy, only one was associated with incomplete removal of fractured stent wire. Median survival was 3.6 ± 2.7 years.</p> <p>Conclusion</p> <p>Ill patients with inoperable lesions may be considered for treatment with SEMAS.</p

    Mechanosensitivity during lower extremity neurodynamic testing is diminished in individuals with Type 2 Diabetes Mellitus and peripheral neuropathy: a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 Diabetes Mellitus (T2DM) and diabetic symmetrical polyneuropathy (DSP) impact multiple modalities of sensation including light touch, temperature, position sense and vibration perception. No study to date has examined the mechanosensitivity of peripheral nerves during limb movement in this population. The objective was to determine the unique effects T2DM and DSP have on nerve mechanosensitivity in the lower extremity.</p> <p>Methods</p> <p>This cross-sectional study included 43 people with T2DM. Straight leg raise neurodynamic tests were performed with ankle plantar flexion (PF/SLR) and dorsiflexion (DF/SLR). Hip flexion range of motion (ROM), lower extremity muscle activity and symptom profile, intensity and location were measured at rest, first onset of symptoms (P1) and maximally tolerated symptoms (P2).</p> <p>Results</p> <p>The addition of ankle dorsiflexion during SLR testing reduced the hip flexion ROM by 4.3° ± 6.5° at P1 and by 5.4° ± 4.9° at P2. Individuals in the T2DM group with signs of severe DSP (n = 9) had no difference in hip flexion ROM between PF/SLR and DF/SLR at P1 (1.4° ± 4.2°; paired t-test p = 0.34) or P2 (0.9° ± 2.5°; paired t-test p = 0.31). Movement induced muscle activity was absent during SLR with the exception of the tibialis anterior during DF/SLR testing. Increases in symptom intensity during SLR testing were similar for both PF/SLR and DF/SLR. The addition of ankle dorsiflexion induced more frequent posterior leg symptoms when taken to P2.</p> <p>Conclusions</p> <p>Consistent with previous recommendations in the literature, P1 is an appropriate test end point for SLR neurodynamic testing in people with T2DM. However, our findings suggest that people with T2DM and severe DSP have limited responses to SLR neurodynamic testing, and thus may be at risk for harm from nerve overstretch and the information gathered will be of limited clinical value.</p

    Old World Monkeys Compare to Apes in the Primate Cognition Test Battery

    Get PDF
    Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and – prima facie – support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences

    Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans

    Get PDF
    Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 ”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 ”m) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Creation of PDX-Bearing Humanized Mice to Study Immuno-oncology.

    No full text
    A significant obstacle to the study of human cancer biology and the testing of human specific immunotherapeutics is the paucity of translational models that recapitulate both the growth of human tumors and the functionality of human immune systems. Humanized mice engrafted with human hematopoietic stem cells (HSC) and patient-derived xenografts (PDX) enable preclinical investigation of the interactions between the human immune system and human cancer. We use immunodeficient non-obese diabetic (NOD, scid, gamma) NSGℱ or NSGℱ-SGM3 mice as hosts for establishment of human immunity following HSC injection and for engraftment of human tumors. Here we describe a refined protocol for the subcutaneous implant of solid PDX tumors into humanized mice. Protocols to recover infiltrating immune cells from growing tumors and to evaluate the immune cell subsets by flow cytometry are also described

    Reversing the Trend from “Early” to “Late” Exit: Push, Pull and Jump Revisited in a Danish Context

    No full text
    Denmark is a low exit country in EU-25. As such, the Danish experience contradicts most wisdom in mainstream research on the causes of early exit/retirement. The Danish labour market is one of the most brutal vis-à-vis older workers in Europe, while the Danish early retirement schemes are among the most generous in Europe. For these reasons one should expect Denmark to be a high exit country. The contrary is true. With this background, it is argued that cultural and social–psychological factors play a far stronger role in shaping retirement patterns than we tend normally to assume. Accordingly, in recent years Denmark has employed cultural steering based on the voluntary participation of firms and other social partners in attempts to raise further the employment rate of older workers. Cultural steering has been supplemented by the introduction of “positive” incentives, that is, individuals and municipalities are rewarded economically if retirement is postponed. The Geneva Papers (2005) 30, 656–673. doi:10.1057/palgrave.gpp.2510046
    • 

    corecore