20 research outputs found

    Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    Get PDF
    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper

    Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission

    Get PDF
    Current concepts of operations for human exploration of Mars center on the staged deployment of spacecraft, logistics, and crew. Though most studies focus on the needs for human occupation of the spacecraft and habitats, these resources will spend most of their lifetime unoccupied. As such, it is important to identify the operational state of the unoccupied spacecraft or habitat, as well as to design the systems to enable the appropriate level of autonomy. Key goals for this study include providing a realistic assessment of what "dormancy" entails for human spacecraft, exploring gaps in state-of-the-art for autonomy in human spacecraft design, providing recommendations for investments in autonomous systems technology development, and developing architectural requirements for spacecraft that must be autonomous during dormant operations. The mission that was chosen is based on a crewed mission to Mars. In particular, this study focuses on the time that the spacecraft that carried humans to Mars spends dormant in Martian orbit while the crew carries out a surface mission. Communications constraints are assumed to be severe, with limited bandwidth and limited ability to send commands and receive telemetry. The assumptions made as part of this mission have close parallels with mission scenarios envisioned for dormant cis-lunar habitats that are stepping-stones to Mars missions. As such, the data in this report is expected to be broadly applicable to all dormant deep space human spacecraft

    The Far-Ultraviolet "Continuum" in Protoplanetary Disk Systems II: CO Fourth Positive Emission and Absorption

    Get PDF
    We exploit the high sensitivity and moderate spectral resolution of the HSTHST-Cosmic Origins Spectrograph to detect far-ultraviolet spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. We measure a CO column density and rotational excitation temperature of N(CO) = 2 +/- 1 ×\times 1017^{17} cm2^{-2} and T_rot(CO) 500 +/- 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by ultraviolet line photons, predominantly HI LyA. All three objects show emission from CO bands at λ\lambda >> 1560 \AA, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2_{2}, and photo-excited H2; all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar LyA emission profile. We find CO parameters in the range: N(CO) 101819^{18-19} cm2^{-2}, T_{rot}(CO) > 300 K for the LyA-pumped emission. We combine these results with recent work on photo- and collisionally-excited H2_{2} emission, concluding that the observations of ultraviolet-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm.Comment: 12 pages, 7 figures, 3 tables. ApJ - accepte

    Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    Full text link
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.Comment: 22 pages, RFI submitted to Astro2010 Decadal Committe

    The DARPA High Productivity Computing Systems (HPCS)

    No full text
    In this research, we are developing our understanding of how the high performance computing community develops effective parallel implementations of programs by collecting the folklore within the community. We use this folklore as the basis for a series of experiments, which we expect, will validate or negate these assumptions

    A Pragmatic Documents Standard for an Experience Library: Roles, Documents, Contents and Structure

    Get PDF
    This report constitutes a documents standard. It describes the major roles, processes, and documents necessary for designing, running, analyzing, synthesizing, recording and disseminating information from controlled experiments. (Other kinds of empirical studies, such as case studies, are not covered.) This description is the result of the authors' experience with replication of controlled experiments, and addresses what was learned about the needs of both the original experimenter and the replicator

    Parallel Programmer Productivity: A Case Study of Novice

    No full text
    In developing High-Performance Computing (HPC) software, time to solution is an important metric. This metric is comprised of two main components: the human effort required developing the software, plus the amount of machine time required to execute it. To date, little empirical work has been done to study the first component: the human effort required and the effects of approaches and practices that may be used to reduce it. In this paper, we describe a series of studies that address this problem. We instrumented the development process used in multiple HPC classroom environments. We analyzed data within and across such studies, varying factors such as the parallel programming model used and the application being developed, to understand their impact on the development process.

    A Pilot Study to Evaluate Development Effort for High Performance Computing

    No full text
    The ability to write programs that execute efficiently on modern parallel computers has not been fully studied. In a DARPA-sponsored project, we are looking at measuring the development time for programs written for high performance computers (HPC). To attack this relatively novel measurement problem, our goal is to initially measure such development time in student programming to evaluate our own experimental protocols. Based on these results, we will generate a set of feasible experimental methods that can then be applied with more confidence to professional expert programmers
    corecore