112 research outputs found

    Low-Energy (\u3c 20 eV) and High-Energy (1000 eV) Electron-Induced Methanol Radiolysis of Astrochemical Interest

    Get PDF
    We report the first infrared study of the low-energy (\u3c 20 eV) electron-induced reactions of condensed methanol. Our goal is to simulate processes which occur when highenergy cosmic rays interact with interstellar and cometary ices, where methanol, a precursor of several prebiotic species, is relatively abundant. The interactions of high-energy radiation, such as cosmic rays (Emax ~1020 eV), with matter produce large numbers of low-energy secondary electrons, which are known to initiate radiolysis reactions in the condensed phase. Using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS), we have investigated low-energy (5–20 eV) and high-energy (~1000 eV) electron-induced reactions in condensed methanol (CH3OH). IRAS has the benefit that it does not require thermal processing prior to product detection. Using IRAS, we have found evidence for the formation of ethylene glycol (HOCH2CH2OH), formaldehyde (CH2O), dimethyl ether (CH3OCH3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and the hydroxyl methyl radical (•CH2OH) upon both low-energy and high-energy electron irradiation of condensed methanol at ~85 K. Additionally, TPD results, presented herein, are similar for methanol films irradiated with both 1000 eV and 20 eV electrons. These IRAS and TPD findings are qualitatively consistent with the hypothesis that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. Moreover, methoxymethanol (CH3OCH2OH) could serve as a tracer molecule for electron-induced reactions in the interstellar medium. The results of experiments such as ours may provide a fundamental understanding of how complex organic molecules (COM) are synthesized in cosmic ices

    CO diffusion into amorphous H2O ices

    Get PDF
    The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15–23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick's diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ~160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.Astronom

    Triplet-sensitization by lead halide perovskite thin films for near-infrared-to-visible upconversion

    Full text link
    Lead halide-based perovskite thin films have attracted great attention due to the explosive increase in perovskite solar cell efficiencies. The same optoelectronic properties that make perovskites ideal absorber materials in solar cells are also beneficial in other light-harvesting applications and make them prime candidates as triplet sensitizers in upconversion via triplet-triplet annihilation in rubrene. In this contribution, we take advantage of long carrier lifetimes and carrier diffusion lengths in perovskite thin films, their high absorption cross sections throughout the visible spectrum, as well as the strong spin-orbit coupling owing to the abundance of heavy atoms to sensitize the upconverter rubrene. Employing bulk perovskite thin films as the absorber layer and spin-mixer in inorganic/organic heterojunction upconversion devices allows us to forego the additional tunneling barrier owing from the passivating ligands required for colloidal sensitizers. Our bilayer device exhibits an upconversion efficiency in excess of 3% under 785 nm illumination

    The subtropical nutrient spiral

    Get PDF
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 17 (2003): 1110, doi:10.1029/2003GB002085.We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m−2 yr−1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call “the nutrient spiral,” as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.This work was supported by grants from the National Science Foundation (OCE-0221247) and NSF/ONR NOPP (N000140210370)

    Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices

    Get PDF
    We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by high-energy (1 keV) and low-energy (7 eV) electron-irradiation of nanoscale thin films of ammonia deposited on cryogenically cooled metal substrates. Irradiated films were analyzed by temperature-programmed desorption (TPD). Experiments with ammonia isotopologues provide convincing evidence for the electron-induced formation of hydrazine (N2H4) and diazene (N2H2) from condensed NH3. To understand the dynamics of ammonia radiolysis, the dependence of hydrazine and diazene yields on incident electron energy, electron flux, electron fluence, film thickness, and ice temperature were investigated. Radiolysis yield measurements versus (1) irradiation time and (2) film thickness are semiquantitatively consistent with a reaction mechanism that involves a bimolecular step for the formation of hydrazine and diazene from the dimerization of amidogen (NH2) and imine (NH) radicals, respectively. The apparent decrease in radiolysis yield of hydrazine and diazene with decreasing electron flux at constant fluence may be due to the competing desorption of these radicals at 90 K under low incident electron flux conditions. The production of hydrazine at electron energies as low as 7 eV and an ice temperature of 22 K is consistent with condensed phase radiolysis being mediated by low-energy secondary electrons produced by the interaction of high-energy radiation with matter. These results provide a basis from which we can begin to understand the mechanisms by which ammonia can form more complex species in cosmic ices

    A modeling study of the seasonal oxygen budget of the global ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05017, doi:10.1029/2006JC003731.An ecosystem model embedded in a global ocean general circulation model is used to quantify roles of biological and physical processes on seasonal oxygen variations. We find that the thermally induced seasonal net outgassing (SNO) of oxygen is overestimated by about 30% if gas phase equilibrium is assumed, and we find that seasonal variations in thermocline oxygen due to biology are approximated well using the oxygen anomaly. Outside the tropics and the north Indian Ocean, biological SNO is, on average, 56% of net community production (defined as net oxygen production above 76 m) during the outgassing period and 35% of annual net community production. In the same region the seasonal drawdown of the oxygen anomaly within the upper thermocline (76–500 m) is 76% of the remineralization during the drawdown and 48% of annual remineralization. Applying model-derived relationships to observed O2 climatologies and using independent estimates for tropical and monsoonal systems, we estimate global net community production to be 14.9 ± 2.5 Pg C yr−1.R.N., X.J., and F.L. were supported from the following grants: NOAA NA16GP2987, NASA NAG5-6451, and NSF OCE-9711937

    Meso- and macrozooplankton communities in the Weddell Sea, Antarctica

    Get PDF
    The present paper describes composition and abundance of meso- and macrozooplankton in the epipelagic zone of the Weddell Sea and gives a systematic review of encountered species regarding results of earlier expeditions. Material was sampled from 6 February to 10 March 1983 from RV Polarstern with a RMT 1+8 m (320 and 4500 μm mesh size). In agreement with topography and water mass distribution three distinct communities were defined, clearly separated by cluster analysis: The Southern Shelf Community has lowest abundances (approx. 9000 ind./1000 m3). Euphausia crystallorophias and Metridia gerlachei are predominating. Compared with the low overall abundance the number of regularly occurring species is high (55) due to many neritic forms. Herbivores and omnivores are dominating (58% and 35%). The North-eastern Shelf Community has highest abundances (about 31 000 ind./1000 m3). It is predominated by copepodites I–III of Calanus propinquus and Calanoides acutus (61%). The faunal composition is characterized by both oceanic and neritic species (64). Fine-filter feeders are prevailing (65%). The Oceanic Community has a mean abundance of approximately 23 000 ind./1000 m3, consisting of 61 species. Dominances are not as pronounced as in the shelf communities. Apart from abundant species like Calanus propinquus, Calanoides acutus, Metridia gerlachei, Oithona spp. and Oncaea spp. many typical inhabitants of the Eastwind Drift are encountered. All feeding types have about the same importance in the Oceanic Community

    Reading, writing, and social justice : a middle school investigation of audism

    No full text
    A major goal in secondary education is social justice. Based on Cummins' framework for the empowerment of minority students, a bilingual curriculum centered persuasive writing was designed and implemented, encouraging the analysis of literature and social justice. The curriculum provides students the opportunity to read about deaf characters, study discrimination, analyze persuasion in the news, as well as participate in Writer's Workshop and the bilingual writing process. Deaf students participated in a study of discrimination in the world with a primary focus of Audism. The curriculum addresses Audism in multiple facets, allowing students to make associations to readings, as well as their own lives. This cross-content study promotes the advocacy by means of persuasive writin
    corecore