104 research outputs found

    Author Roger Bivand [cre, aut],Nicholas Lewin-

    Get PDF
    Description Set of tools for manipulating and reading geographic data, in particular ESRI shapefiles; C code used from shapelib. It includes binary access to GSHHG shoreline files. The package also provides interface wrappers for exchanging spatial objects with packages such as PB-Smapping, spatstat, maps, RArcInfo, Stata tmap, WinBUGS, Mondrian, and others. License GPL (> = 2

    Delinquent Behavior of Dutch Rural Adolescents

    Get PDF
    This article compares Dutch rural and non-rural adolescents’ delinquent behavior and examines two social correlates of rural delinquency: communal social control and traditional rural culture. The analyses are based on cross-sectional data, containing 3,797 participants aged 13–18 (48.7% females). The analyses show that rural adolescents are only slightly less likely to engage in delinquent behavior. Furthermore, while rural adolescents are exposed more often to communal social control, this does not substantially reduce the likelihood that they engage in delinquent behavior. Concerning rural culture, marked differences appeared between rural and non-rural adolescents. First, alcohol use and the frequency of visiting pubs were more related to rural adolescents’ engagement in delinquent behavior. Second, the gender gap in delinquency is larger among rural adolescents: whereas rural boys did not differ significantly from non-rural boys, rural girls were significantly less likely to engage in delinquent behavior than non-rural girls. However, the magnitude of the effects of most indicators was rather low. To better account for the variety of rural spaces and cultures, it is recommended that future research into antisocial and criminal behavior of rural adolescents should adopt alternative measurements of rurality, instead of using an indicator of population density only

    Identification and Characterisation of Pseudomonas 16S Ribosomal DNA from Ileal Biopsies of Children with Crohn's Disease

    Get PDF
    Molecular analysis of bacterial 16S rRNA genes has made a significant contribution to the identification and characterisation of bacterial flora in the human gut. In particular, this methodology has helped characterise bacterial families implicated in the aetiology of inflammatory bowel disease (IBD). In this study we have used a genus specific bacterial 16S PCR to investigate the prevalence and diversity of Pseudomonas species derived from the ileum of children with Crohn's disease (CD), and from control children with non-inflammatory bowel disease (non-IBD) undergoing their initial endoscopic examination. Fifty eight percent of CD patients (18/32) were positive using the Pseudomonas PCR, while significantly fewer children in the non-IBD group, 33% (12/36), were PCR positive for Pseudomonas (p<0.05, Fischer's exact test). Pseudomonas specific 16S PCR products from 13 CD and 12 non-IBD children were cloned and sequenced. Five hundred and eighty one sequences were generated and used for the comparative analysis of Pseudomonas diversity between CD and non-IBD patients. Pseudomonas species were less diverse in CD patients compared with non-IBD patients. In particular P.aeruginosa was only identified in non-IBD patients

    Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats

    Get PDF
    Management and technical approaches that achieve a sustainable level of fish production while at the same time minimizing or limiting the wider ecological effects caused through fishing gear contact with the seabed might be considered to be ‘best practice’. To identify future knowledge-needs that would help to support a transition towards the adoption of best practices for trawling, a prioritization exercise was undertaken with a group of 39 practitioners from the seafood industry and management, and 13 research scientists who have an active research interest in bottom-trawl and dredge fisheries. A list of 108 knowledge-needs related to trawl and dredge fisheries was developed in conjunction with an ‘expert task force’. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge-need. The top 25 knowledge-needs are presented, as scored separately by practitioners and scientists. There was considerable consistency in the priorities identified by these two groups. The top priority knowledge-need to improve current understanding on the distribution and extent of different habitat types also reinforced the concomitant need for the provision and access to data on the spatial and temporal distribution of all forms of towed bottom-fishing activities. Many of the other top 25 knowledge-needs concerned the evaluation of different management approaches or implementation of different fishing practices, particularly those that explore trade-offs between effects of bottom trawling on biodiversity and ecosystem services and the benefits of fish production as food.Fil: Kaiser, Michel J.. Bangor University; Reino UnidoFil: Hilborn, Ray. University of Washington; Estados UnidosFil: Jennings, Simon. Fisheries and Aquaculture Science; Reino UnidoFil: Amaroso, Ricky. University of Washington; Estados UnidosFil: Andersen, Michael. Danish Fishermen; DinamarcaFil: Balliet, Kris. Sustainable Fisheries Partnership; Estados UnidosFil: Barratt, Eric. Sanford Limited; Nueva ZelandaFil: Bergstad, Odd A. Institute of Marine Research; NoruegaFil: Bishop, Stephen. Independent Fisheries Ltd; Nueva ZelandaFil: Bostrom, Jodi L. Marine Stewardship Council; Reino UnidoFil: Boyd, Catherine. Clearwater Seafoods; CanadáFil: Bruce, Eduardo A. Friosur S.A.; ChileFil: Burden, Merrick. Marine Conservation Alliance; Estados UnidosFil: Carey, Chris. Independent Fisheries Ltd.; Estados UnidosFil: Clermont, Jason. New England Aquarium; Estados UnidosFil: Collie, Jeremy S. University of Rhode Island,; Estados UnidosFil: Delahunty, Antony. National Federation of Fishermen; Reino UnidoFil: Dixon, Jacqui. Pacific Andes International Holdings Limited; ChinaFil: Eayrs, Steve. Gulf of Maine Research Institute; Estados UnidosFil: Edwards, Nigel. Seachill Ltd.; Reino UnidoFil: Fujita, Rod. Environmental Defense Fund; Reino UnidoFil: Gauvin, John. Alaska Seafood Cooperative; Estados UnidosFil: Gleason, Mary. The Nature Conservancy; Estados UnidosFil: Harris, Brad. Alaska Pacific University; Estados UnidosFil: He, Pingguo. University of Massachusetts Dartmouth; Estados UnidosFil: Hiddink, Jan G. Bangor University; Reino UnidoFil: Hughes, Kathryn M. Bangor University; Reino UnidoFil: Inostroza, Mario. EMDEPES; ChileFil: Kenny, Andrew. Fisheries and Aquaculture Science; Reino UnidoFil: Kritzer, Jake. Environmental Defense Fund; Estados UnidosFil: Kuntzsch, Volker. Sanford Limited; Estados UnidosFil: Lasta, Mario. Diag. Montegrande N° 7078. Mar del Plata; ArgentinaFil: Lopez, Ivan. Confederacion Española de Pesca; EspañaFil: Loveridge, Craig. South Pacific Regional Fisheries Management Organisation; Nueva ZelandaFil: Lynch, Don. Gorton; Estados UnidosFil: Masters, Jim. Marine Conservation Society; Reino UnidoFil: Mazor, Tessa. CSIRO Marine and Atmospheric Research; AustraliaFil: McConnaughey, Robert A. US National Marine Fisheries Service; Estados UnidosFil: Moenne, Marcel. Pacificblu; ChileFil: Francis. Marine Scotland Science; Reino UnidoFil: Nimick, Aileen M. Alaska Pacific University; Estados UnidosFil: Olsen, Alex. A. Espersen; DinamarcaFil: Parker, David. Young; Reino UnidoFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Penney, Christine. Clearwater Seafoods; CanadáFil: Pierce, David. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Pitcher, Roland. CSIRO Marine and Atmospheric Research; AustraliaFil: Pol, Michael. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Richardson, Ed. Pollock Conservation Cooperative; Estados UnidosFil: Rijnsdorp, Adriaan D. Wageningen IMARES; Países BajosFil: Rilatt, Simon. A. Espersen; DinamarcaFil: Rodmell, Dale P. National Federation of Fishermen's Organisations; Reino UnidoFil: Rose, Craig. FishNext Research; Estados UnidosFil: Sethi, Suresh A. Alaska Pacific University; Estados UnidosFil: Short, Katherine. F.L.O.W. Collaborative; Nueva ZelandaFil: Suuronen, Petri. Fisheries and Aquaculture Department; ItaliaFil: Taylor, Erin. New England Aquarium; Estados UnidosFil: Wallace, Scott. The David Suzuki Foundation; CanadáFil: Webb, Lisa. Gorton's Inc.; Estados UnidosFil: Wickham, Eric. Unit four –1957 McNicoll Avenue; CanadáFil: Wilding, Sam R. Monterey Bay Aquarium; Estados UnidosFil: Wilson, Ashley. Department for Environment; Reino UnidoFil: Winger, Paul. Memorial University Of Newfoundland; CanadáFil: Sutherland, William J. University of Cambridge; Reino Unid

    TOI-1338 : TESS' first transiting circumbinary planet

    Get PDF
    Funding: Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. W.F.W. and J.A.O.thank John Hood Jr. for his generous support of exoplanet research at SDSU. Support was also provided and acknowledged through NASA Habitable Worlds grant 80NSSC17K0741 and NASA XRP grant 80NSSC18K0519. This work is partly supported by NASA Habitable Worlds grant 80NSSC17K0741. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant No.(DGE-1746045). A.H.M.J.T. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 803193/BEBOP) and from a Leverhulme Trust Research Project grant No. RPG-2018-418. A.C. acknowledges support by CFisUC strategic project (UID/FIS/04564/2019).We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M⊙ and 0.3 M⊙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations—a common signature of transiting CBPs. Its orbit is nearly circular (e ≍ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars.Publisher PDFPeer reviewe
    corecore