22 research outputs found

    Pulsating stars in NGC 6231 Frequency analysis and photometric mode identification near the main sequence

    Full text link
    We used Johnson UBV photometric CCD observations to identify pulsating and other variable stars in the young open cluster NGC 6231. The multi-color information was used to classify pulsating variables, perform frequency analysis, and - where possible - to compare observed to theoretical amplitude ratios for mode identification. The data reduction was performed with standard IRAF tools. Differential light curves have been obtained by identifying a set of suitable comparison stars and the frequency analysis was then conducted on the basis of Fourier methods. Our classification of pulsating stars was based on the time scales and amplitudes of the variability with respect to the different filters and stellar parameters as calculated from published Str\"omgren and Geneva photometry. We identified 32 variable stars in the field of the cluster out of which 21 are confirmed members and twelve are newly detected variable stars. Ten stars were classified as Slowly Pulsating B (SPB) stars in NGC 6231 out of which seven are new discoveries. We also analyzed six previously reported {\beta} Cephei variables in more detail. One of them may be a hybrid {\beta} Cephei/SPB pulsator. In addition, we investigated five more previously suspected pulsators of this group which we cannot convincingly confirm. The remaining eleven variable stars are either not members of NGC 6231 or the membership status is questionable. Among them are three previously known {\delta} Scuti stars, two newly detected pulsators of this class, one new and two already known eclipsing binaries, one new SPB variable, one possible Pre-Main-Sequence (PMS) pulsator and another new variable star for which we cannot present a classification. With more than 20 main sequence pulsators of spectral type B, NGC 6231 becomes the open cluster with the largest population of such pulsating stars known.Comment: 27 pages, 35 figures, 3 Tables, accepted by A&A, abstract excessively shorted due to character limit

    Photometric Observations of Three High Mass X-Ray Binaries and a Search for Variations Induced by Orbital Motion

    Full text link
    We searched for long period variation in V-band, Ic-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover orbitally induced variation. Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24- and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier periodograms suggested the existence of long period variation in the V-band light curves of all three HMXBs, however folding the data at those periods did not reveal convincing periodic variation. At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data. Long term V-band observations, on the order of several years, taken at a frequency of at least once per week and with a precision of 0.01 mag, therefore still have a chance of revealing long term variation in these three HMXBs.Comment: Accepted, RAA, May, 201

    Delta Scuti Network observations of XX Pyx : detection of 22 pulsation modes and of short-term amplitude and frequency variations

    Get PDF
    We report multisite observations devoted to the main-sequence δ Scuti star XX Pyx, conducted as the 17th run of the Delta Scuti Network. Over 125 nights a total of 550 h of usable time-series photometric B- and V-filter data were acquired involving both photoelectric and CCD measurements at eight observatories spread around the world, which represents the most extensive single time-series for any pulsating star other than the Sun obtained so far. We describe our observations and reduction methods, and present the frequency analysis of our new data. First, we detect six new pulsation and five new combination frequencies in the star's light curves. We also discover evidence for amplitude and/or frequency variations of some of the modes during the observations. These can occur on time-scales as short as 20 d and show quite diverse behaviour. To take them into account in the frequency analysis, a so-called non-linear frequency analysis method was developed, allowing us to quantify the temporal variability of the modes and to compensate for it. Following that we continue the frequency search and we also incorporate published multisite observations. In this way, we reveal three more pulsation and two more combination frequencies. In the end, we report a total of 30 significant frequencies - 22 of which correspond to independent pulsation modes. This is the largest number of independent modes ever detected in the light curves of a δ Scuti star. The frequencies of the modes show preferred separations as already suggested by previous work on this star; they are also arranged in clear patterns. These results lead to a refinement of the stellar mean density (ṗ = 0.241 ± 0:008 ṗ ̛) and to a new constraint on the rotation rate of XX Pyx vrot = 1.1 ± 0.3d-ˡ: However, our attempts to identify the modes by pattern recognition failed. Moreover, mode identification from multicolour photometry failed as well because the high pulsation frequencies make this method unfavourable. The diverse behaviour of the amplitude and frequency variations of some of the modes leaves resonances as the only presently known possibility for their explanation

    Constraining the evolution of ZZ Ceti

    Get PDF
    We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf ) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt ≤ (5:5 ± 1:9) x 10 15 s s-ˡ, after correcting for proper motion. Our results are consistent with previous _PP values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is |P/PP| ≥ 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions

    Discovery of the 'missing' mode in HR 1217 by the Whole Earth Telescope

    No full text
    HR1217 is a prototypical rapidly oscillating Ap star that has presented a test to the theory of non-radial stellar pulsation. Prior observations showed a clear pattern of five modes with alternating frequency spacings of 33.3 and 34.6 μmHz, with a sixth mode at a problematic spacing of 50.0 μHz (which equals 1.5 x 33.3 μHz) to the high-frequency side. Asymptotic pulsation theory allowed for a frequency spacing of 34 μHz, but Hipparcos observations rule out such a spacing. Theoretical calculations of magnetoacoustic modes in Ap stars by Cunha predicted that there should be a previously undetected mode 34 μHz higher than the main group, with a smaller spacing between it and the highest one. In this Letter, we present preliminary results from a multisite photometric campaign on the rapidly oscillating Ap star HR1217 using the ‘Whole Earth Telescope’. While a complete analysis of the data will appear in a later paper, one outstanding result from this run is the discovery of a newly detected frequency in the pulsation spectrum of this star, at the frequency predicted by Cunha
    corecore