936 research outputs found

    Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres

    Get PDF
    A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped GdAlGaO (GAGG:Ce) and YAlO (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution was studied as a function of the incidence angle of the beam and found to be of the order of 10%/E⊕1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 ± 0.2) ps at 5 GeV.We acknowledge support by the CERN Strategic Programme on Technologies for Future Experiments, https://ep-rnd.web.cern.ch/, by the MCIN/AEI, GenCat and GVA (Spain), and by the NSFC (China) under grant Nos. 12175005, 12061141007. The measurements were performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF). The authors would like to thank T. Schneider, H. Gerwig, N. Siegrist, and D. Deyrail (CERN) for their help in designing and assembling the prototype and the set-up, A. Barnyakov, Budker Institute of Nuclear Physics (BINP), Novosibirsk, for kindly providing the MCPs, and the ITEP ATLAS group for the DWCs

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    Study of charmonium decays to KS0KπK^0_S K \pi in the B(KS0Kπ)KB \to (K^0_S K \pi) K channels

    Get PDF
    A study of the B+KS0K+Kπ+B^+\to K^0_SK^+K^-\pi^+ and B+KS0K+K+πB^+\to K^0_SK^+K^+\pi^- decays is performed using proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV at the LHCb experiment. The KS0KπK^0_SK \pi invariant mass spectra from both decay modes reveal a rich content of charmonium resonances. New precise measurements of the ηc\eta_c and ηc(2S)\eta_c(2S) resonance parameters are performed and branching fraction measurements are obtained for B+B^+ decays to ηc\eta_c, J/ψJ/\psi, ηc(2S)\eta_c(2S) and χc1\chi_{c1} resonances. In particular, the first observation and branching fraction measurement of B+χc0K0π+B^+ \to \chi_{c0} K^0 \pi^+ is reported as well as first measurements of the B+K0K+Kπ+B^+\to K^0K^+K^-\pi^+ and B+K0K+K+πB^+\to K^0K^+K^+\pi^- branching fractions. Dalitz plot analyses of ηcKS0Kπ\eta_c \to K^0_SK\pi and ηc(2S)KS0Kπ\eta_c(2S) \to K^0_SK\pi decays are performed. A new measurement of the amplitude and phase of the KπK \pi SS-wave as functions of the KπK \pi mass is performed, together with measurements of the K0(1430)K^*_0(1430), K0(1950)K^*_0(1950) and a0(1700)a_0(1700) parameters. Finally, the branching fractions of χc1\chi_{c1} decays to KK^* resonances are also measured.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-051.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0ΩK+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0Ξπ+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4fb15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0ΩK+)B(Ωc0Ωπ+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0Ξπ+)B(Ωc0Ωπ+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext)MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Measurement of lepton universality parameters in B+K++B^+\to K^+\ell^+\ell^- and B0K0+B^0\to K^{*0}\ell^+\ell^- decays

    Get PDF
    A simultaneous analysis of the B+K++B^+\to K^+\ell^+\ell^- and B0K0+B^0\to K^{*0}\ell^+\ell^- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2q^2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 99 fb1\text{fb}^{-1}. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2q^2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-045.html (LHCb public pages

    Measurement of the mass difference and relative production rate of the Ωb\Omega^-_b and Ξb\Xi^-_b baryons

    Full text link
    The mass difference between the Ωb\Omega^-_b and Ξb\Xi^-_b baryons is measured using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9fb19 \, \text{fb}^{-1}, and is found to be \begin{equation} m(\Omega^-_b)- m(\Xi^-_b) = 248.54 \pm 0.51 \text{(stat)} \pm 0.38 \text{(syst)} \, \text{MeV}/c^2. \end{equation} The mass of the Ωb\Omega^-_b baryon is measured to be \begin{equation} m(\Omega^-_b)= 6045.9 \pm 0.5 \text{(stat)} \pm 0.6 \text{(syst)} \, \text{MeV}/c^2. \end{equation} This is the most precise determination of the Ωb\Omega^-_b mass to date. In addition, the production rate of Ωb\Omega^-_b baryons relative to that of Ξb\Xi^-_b baryons is measured for the first time in pppp collisions, using an LHCb dataset collected at a center-of-mass energy of 13TeV13 \, \text{TeV} and corresponding to an integrated luminosity of 6fb16\,\text{fb}^{-1}. Reconstructing beauty baryons in the kinematic region 2<η<62 < \eta < 6 and pT<20GeV/cp_T < 20\,\text{GeV}/c with their decays to a J/ψJ/\psi meson and a hyperon, the ratio \begin{equation} \frac{f_{\Omega^-_b}}{f_{\Xi^-_b}}\times\frac{\mathcal{B}(\Omega^-_b \to J/\psi \Omega^-)}{\mathcal{B}(\Xi^-_b \to J/\psi \Xi^-)} = 0.120 \pm 0.008 \text{(stat)} \pm 0.008 \text{(syst)}, \end{equation} is obtained, where fΩbf_{\Omega^-_b} and fΞbf_{\Xi^-_b} are the fragmentation fractions of bb quarks into Ωb\Omega^-_b and Ξb\Xi^-_b baryons, respectively, and B\mathcal{B} represents the branching fractions of their respective decays.Comment: 23 pages, 3 figures. All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-053.html (LHCb public pages

    Fraction of χc\chi_c decays in prompt J/ψJ/\psi production measured in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Full text link
    The fraction of χc1\chi_{c1} and χc2\chi_{c2} decays in the prompt J/ψJ/\psi yield, Fχc=σχcJ/ψ/σJ/ψF_{\chi c}=\sigma_{\chi_c \to J/\psi}/\sigma_{J/\psi}, is measured by the LHCb detector in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV. The study covers the forward (1.5<y<4.01.5<y^*<4.0) and backward (5.0<y<2.5-5.0<y^*<-2.5) rapidity regions, where yy^* is the J/ψJ/\psi rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ±\pm 0.3 nb1^{-1} and 20.8 ±\pm 0.5 nb1^{-1}, respectively. The result is presented as a function of the J/ψJ/\psi transverse momentum pT,J/ψp_{T,J/\psi} in the range 1<pT,J/ψ<20<p_{T, J/\psi}<20 GeV/cc. The FχcF_{\chi c} fraction at forward rapidity is compatible with the LHCb measurement performed in pppp collisions at s=7\sqrt{s}=7 TeV, whereas the result at backward rapidity is 2.4 σ\sigma larger than in the forward region for 1<pT,J/ψ<31<p_{T, J/\psi}<3 GeV/cc. The increase of FχcF_{\chi c} at low pT,J/ψp_{T, J/\psi} at backward rapidity is compatible with the suppression of the ψ\psi(2S) contribution to the prompt J/ψJ/\psi yield. The lack of in-medium dissociation of χc\chi_c states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb public pages

    Measurement of ZZ boson production cross-section in pppp collisions at s=5.02\sqrt{s} = 5.02 TeV

    Full text link
    The first measurement of the ZZ boson production cross-section at centre-of-mass energy s=5.02\sqrt{s} = 5.02\,TeV in the forward region is reported, using pppp collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of 100±2pb1100 \pm 2\,\rm{pb^{-1}}. The production cross-section is measured for final-state muons in the pseudorapidity range 2.020GeV/c2.0 20\,\rm{GeV/}\it{c}. The integrated cross-section is determined to be σZμ+μ=39.6±0.7(stat)±0.6(syst)±0.8(lumi) pb \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} for the di-muon invariant mass in the range 60<Mμμ<120GeV/c260<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the ZZ boson production cross-section in ppPb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV, the nuclear modification factor RpPbR_{p\rm{Pb}} is measured for the first time at this energy. The measured values are 1.20.3+0.5(stat)±0.1(syst)1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst}) in the forward region (1.53<yμ<4.031.53<y^*_{\mu}<4.03) and 3.60.9+1.6(stat)±0.2(syst)3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst}) in the backward region (4.97<yμ<2.47-4.97<y^*_{\mu}<-2.47), where yμy^*_{\mu} represents the muon rapidity in the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb public pages
    corecore