68 research outputs found
Asiatic Acid Inhibits Pro-Angiogenic Effects of VEGF and Human Gliomas in Endothelial Cell Culture Models
Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas
Additional file 1: of Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging
Table S1. DPPH radical scavenging activity of plants extracts and quercetin. The supplementary file compares the DPPH radical scavenging activity of different methanolic plant extracts in terms of its percentage of inhibition and IC50 values. Quercetin was used as a standard to compare the efficacy of the plant extracts. Table S2. DPPH radical scavenging activity of poly herbal formulations. The supplementary file compares the DPPH radical scavenging activity of poly herbal formulations in terms of its percentage of inhibition and IC50 values. TableS3. Total reducing power of methanolic plant extracts. The supplementary file compares the ability of plant extracts to reduce ferric iron to ferrous iron, using vitamin C as a standard to calculate the reducing power of the extracts equivalent to vitamin C. Table S4. reducing power of poly herbal formulations. The supplementary file compares the ability of poly herbal formulations to reduce ferric iron to ferrous iron, using vitamin C as a standard to calculate the reducing power of the extracts equivalent to vitamin C. Table S5. Elastase inhibition capacity. The supplementary file compares the elastase inhibition capacity of plant extracts and PHF1 with copper sulfate as standard. Table S6. Nitric oxide scavenging capacity. The supplementary file compares the nitric oxide scavenging capacity of plant extracts and poly herbal formulations with curcumin as standard. Table S7. In vitro inhibitory capacity of poly herbal formulations. The supplementary file enlists the percentage of cells inhibited by poly herbal formulations at different concentrations against NIH3T3 fibroblast cells and A375 malignant melanoma cells (PDF 727 kb
Cadmium biosorption: Lake waters in Bengaluru-mitigation of cadmium-induced oxidative stress by Selaginella bryopteris
ABSTRACTHeavy metals cause alarming levels of environmental and health problems and among them Cadmium has become a threat to organisms and natural resources like soil and water alike. It accumulates in living systems thereby causing oxidative stress. Efforts are made for bioremediation of heavy metals by employing biosorption, which is a well-known economic method for removal and in the current study Selaginella bryopteris was used as biosorbent. The biosorption capacity was optimized by its physicochemical parameters such as pH, dosage, contact time, and temperature. Cadmium-induced Reactive Oxygen Species levels and the antioxidant potential of S. bryopteris in ameliorating them were studied in Drosophila melanogaster. Water-quality analysis was performed using Chemical Oxygen Demand(COD) and Biological Oxygen Demand (BOD) and effect of S.bryopteris on these parameters were also analyzed. Further the concentration of Cadmium via colorimetric assay and Atomic Absorption Spectroscopy(AAS) was employed to quantify the Cadmium in lake water samples before and after treatment with biosorbent. Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) were performed to characterize the surface properties for adsorptive removal of metal ions, and antioxidant studies were conducted to assess the role of S. bryopteris in suppressing oxidative stress
- …